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Conventional structure determination of proteins 
using NMR data is an iterative process where NOE 
assignments and structure calculation are tightly 
coupled.1 Steady advances in algorithm development 
now permit automatic calculation of 3D structures, 
provided chemical shifts are assigned for most atoms 
and the NOESY data quality is sufficient to obtain 
structural restraints.2 For performing a search of 
conformational spaces using a suitable algorithmic or 
software method, these methods must meet the 
experimental restraints as well as force field that 
defines the physical energies between atoms. 
Traditional software for NMR structure calculation 
use simplified force fields compared to atomistic 
molecular dynamics (MD) simulation to enhance the 
search efficiency of conformational space.3-5 For 
instance, Lennard-Jones potential and solvation 
energies are not included. The simplified force fields 
permit fast calculations by higher temperature 
annealing. However, the geometries of the regions 
lacking structural restraints often diverge and are 
inaccurate. On the other hand, atomistic MD 
calculations are suitable for characterizing the 
regions where experimental restraints are insufficient. 
Most atomistic MD-driven calculations for NMR 
structure refinement approximate the solvation 
effects by using generalized Born implicit solvent 
(GBIS) model6 because of the very long 
computational times required for calculating 
interaction energies with explicit solvents. Thus, 
GBIS attains the right balance between the 

computational times and structural accuracy. We 
have reported extensively on the advantages of using 
GBIS in refining protein, protein–protein complex, 
and membrane protein structures.7-12 However, GBIS 
still requires more than two orders of magnitude 
longer computational times compared to 
conventional calculation for NMR structures. 

The performance of scientific computing hardware 
has undergone tremendous advances in the last few 
years. Particularly notable among the recent major 
breakthroughs is the adaptation of Graphic 
Processing Units (GPUs), originally designed to 
accelerate the manipulation of images, to scientific 
computation. GPUs are more effective for treating 
large blocks of data in parallel than Central 
Processing Units (CPUs). Hence, atomistic MD 
simulations are greatly accelerated when run on a 
GPU; in fact, the latest single GPU cards often 
outperform CPU-based clusters. AMBER software 
package has been developed for atomistic MD 
simulations, as well as for calculating NMR 
structures, where both NOE and dihedral angle 
restraints can be easily incorporated. In addition, 
version 12 of the AMBER package of Compute 
Unified Device Architecture (CUDA) supports the 
running in GPU environments.13,14 Inspired by the 
high performance of the latest GPU cards, we have 
endeavored to harness the power of GPU for fast and 
accurate NMR-structure refinement. We selected 
GTX 780 (NVIDIA® GeForce) from among the 
latest GPU cards because of its speed and ready 
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commercial availability. One can purchase a GTX 
780 equipped PC with the costs less than $2,000. Out 
of the four available CUDA-coded AMBER versions 
(SPSP, SPFP, SPDP, and DPDP), we selected SPFP 
(Single Precision Fixed Point),15 which uses a 
combination of single precision for calculation and 
fixed precision for accumulation. We applied the 
GPU-accelerated GBIS to two model proteins: GB1 
and ubiquitin (UBQ). Both high-resolution X-ray 
structures (PDB IDs: 2QMT for GB1 and 1UBQ for 
UBQ) are available, which enables us to juxtapose 
the results by GBIS in a straightforward manner.    

The mean running times for the retrained 
simulated annealing (rSA) period during the 
GPU-accelerated calculations were 519.1 and 384.0 
ns/day for GB1 and UBQ, respectively. Comparing 
these times with the corresponding times of 2.4 and 
1.2 ns/day for the CPU-based runs shows that using 
GPU leads to dramatic increases in the speed. The 
speed acceleration values were approximately 216- 
and 320-fold for GB1 and UBQ, respectively. In the 
latest benchmarks for AMBER atomistic MD 

simulations 
(http://ambermd.org/gpus/benchmarks.htm), 
approximately 55-, 370-, and 464-fold acceleration 
for TRPCage, myoglobin, and nucleosome, 
respectively, were observed on a GTX 780 GPU 
against a Xeon CPU E5-2650 (2.60 GHz). It has been 
concerned that the high performance enhancement by 
GPU CUDA codes resulting from using a 
single-point precision can be negated by the 
diminishing accuracy of the results. It is, therefore, 
critical to know the difference between the structures 
obtained by CPU- and GPU-based GBIS. The 
structures optimized on CPU and GPU at 50 ps were 
almost identical for both GB1 and UBQ within the 
error range (Tables 1 and 2). It can be reasoned by 
two. First, SPFP likely causes less deviation 
compared with pure single-point precision barely 
impairing speed. Second, the use of experimental 
restraints in NMR structure calculations will 
minimize the potential errors caused by single-point 
precision to the point where they are smaller than 
those caused by simplified force field.  

Table 1. Statistics for GBIS-refined GB1 structures 

Parameters 
Durations of restrained simulated annealing (ps) 

50* 50 100 200 300 400 500 1000 
AMBER energy (kcal/mol) -2,061 -2,060 -2,065 -2,069 -2,070 -2,071 -2,074 -2,073 

Backbone RMSD (Å) (mRMSD, residues 1-56) 0.25 0.33 0.23 0.30 0.33 0.29 0.31 0.27 
Most favored region in Ramachandran plot (%) 93.2 93.3 93.8 93.1 94.1 93.3 93.0 93.6 

MolProbity Clash score 0.70 0.64 0.53 0.94 0.53 0.70 0.47 0.47 
rRMSD (Å) (2QMT, residues 1-56) 0.74 0.77 0.78 0.71 0.75 0.74 0.73 0.74 

 
* indicates the data from 50 ps CPU-based calculation 
 
Table 2. Statistics for GBIS-refined UBQ structures 

Parameters 
Durations of restrained simulated annealing (ps) 

50* 50 100 200 300 400 500 1000 
AMBER energy (kcal/mol) -3,161 -3,158 -3,165 -3,169 -3,171 -3,173 -3,175 -3,177 

Backbone RMSD (Å) (mRMSD, residues 1-70) 0.34 0.26 0.41 0.30 0.32 0.29 0.34 0.27 
Most favored region in Ramachandran plot (%) 85.8 85.6 85.4 86.1 84.8 85.6 86.1 85.5 

MolProbity Clash score 2.68 2.44 3.05 2.92 2.84 2.93 2.84 2.64 
rRMSD (Å) (1UBQ, residues 1-70) 0.76 0.74 0.78 0.76 0.77 0.76 0.76 0.76 

 

http://ambermd.org/gpus/benchmarks.htm
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We then investigated the potential improvement of 
the structure quality on increasing the length of the 
rSA duration. AMBER energies decreased slightly 
with time-step length (Tables 1 and 2). However, 
there was no apparent correlation between backbone 
root-mean–square deviation (RMSD) to the mean 
structure (mRMSD), backbone RMSD to the 
reference X-ray structure (rRMSD), the portions of 
the most favored regions in the Ramachandran plot, 
MolProbity clash scores, and the length. The lack of 
correlation of the backbone parameters (RMSD and 
the portion of the most favored regions) means that 
the geometries, at least in the backbone, were in close 
proximity to the optimal locations under the restraints. 
The large number of experimental distance and 
torsion angle restraints for both GB1 and UBQ might 
leave only a small margin for global improvement 
compared to other cases.  

The effects of increments in time-steps were 
further studied with sparse experimental restraints. 
The distance restraints that one can quickly identify 
and prepare in the early stage of NMR data 
interpretation are those from amide protons. 
Knowing the accurate global fold of a protein only 
with the restraints is beneficial for subsequent 
analyses. Since GB1 includes 62 experimental 
HN-HN restraints, whereas UBQ does not, we 
refined the structures of GB1 under a series of rSA 
durations only with the HN-HN distance and 
backbone torsion angle restraints. Here the starting 
100 structures for GBIS were also calculated by 
CYANA with the identical sparse restraints. The 
results clearly showed that a more extended time-step 
improves precision as well as accuracy of the 
resulting ensemble (Table 3). The values of mRMSD 
and rRMSD at 1500 ps were 0.88 and 0.91 Å, 

Table 3. Statistics for GBIS-refined GB1 structures with sparse distance restraints  

Parameters 
Durations of restrained simulated annealing (ps) 

50 100 250 500 750 1000 1250 1500 
AMBER energy (kcal/mol) -2,061 -2,027 -2,097 -2,112 -2,107 -2,125 -2,130 -2,133 

Backbone RMSD (Å) (mRMSD, residues 1-56) 2.90 2.09 1.82 1.25 1.53 0.97 1.16 0.88 
Most favored region in Ramachandran plot (%) 93.4 94.1 93.7 94.7 94.8 95.3 94.6 94.2 

MolProbity Clash score 0.06 0.18 0.12 0.18 0.0 0.23 0.23 0.06 
rRMSD (Å) (2QMT, residues 1-56) 3.16 2.12 1.65 1.23 1.25 0.98 1.17 0.91 

 

 
Figure 1. Ensembles of GB1 calculated with experimental sparse distance restraints and GPU-accelerated GBIS. Top 20 
structures in each duration of restrained simulated annealing were overlaid with backbone atoms of residues 1-56. 
Corresponding lengths were labeled at the bottom. Pymol (http://www.pymol.org) prepared the figures. 

http://www.pymol.org/
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respectively, which are comparable to those of 
conventional calculations. It is noteworthy that 
GPU-accelerated GBIS finished the calculation in a 
day with a single machine. Graphical representations 
reveal the improvements clearly (Fig.1). The 
tendency of improvements is consistent with our 
previous calculations with random omissions of 
distance restraints.16 

In conclusion, we showed a dramatic acceleration 
of GBIS calculations by using GPU, which almost 
compensates the longer computational times required 
for GBIS. To the best of our knowledge, this is the 
first report of using GPU for refining the NMR 
structures. The 1500 ps calculation for 100 structures 
would be one of the longest atomistic refinements. 
This approach would permit a wider use of GBIS, 
even on moderately expensive hardware. 
GPU-accelerated GBIS could be particularly useful 
for biomolecules whose structures are difficult to 
determine by conventional NMR methods, such as 
membrane proteins and protein–protein complexes. It 
is difficult to obtain sufficient experimental restraints 
in the cases. The calculations with HN-HN restraints 
may approximate the situations. In this study, rSA 
was used for searching conformational space. One 
can combine sophisticated algorithm such as replica 
exchange17 with GPU instead. Our results will be a 
meaningful guideline in applying GPU-based 
acceleration into calculating NMR structure.  
 
Experimental Methods 
 
AMBER structural refinement with GBIS consists of 
three stages: 1500-step minimization, restrained 
simulated annealing (rSA), and a second 1500-step 
minimization. In the rSA stage, the temperature rises 
to 1000 K during the first quarter; then, it is 

maintained at 1000 K during the second quarter, 
followed by cooling to 0 K during the second half. 
We used the ff99SB–ILDN all-atom force field18 and 
the generalized Born model (igb=1 option), which is 
a pairwise descreening approach proposed by 
Hawkins, Cramer, and Truhlar.19 The maximum 
distances for summing pairwise nonbonding 
interactions and effective generalized Born radii were 
set at infinity. The covalent bonds containing 
hydrogen were fixed by the SHAKE algorithm, 
resulting in an integration time-step of 2 fs. The force 
constants for distance and torsion angle restraints 
were 50 kcal⋅mol-1⋅Å-2 and 200 kcal⋅mol-1⋅rad-2, 
respectively. The initial structures for GBIS were 
generated by CYANA.4 With the experimentally 
determined distance and torsion angle restraints, 
CYANA generated 100 structures that did not violate 
the input restraints greatly. There were a total of 
584/101 and 1188/62 distance/backbone torsion angle 
restraints for GB1 and UBQ, respectively. For sparse 
distance restraints of GB1, 62 HN-HN restraints 
consisting of 37 sequential, 15 medium and 10 
long-range data were extracted. Out of the 100 
structures calculated by GBIS, we chose the 20 that 
showed the lowest AMBER energies as a final 
ensemble. As references, we performed 50 ps GBIS 
using the CPU version of AMBER with identical 
input files on an Intel® Xeon workstation with an 
E5-2650 (2.00 GHz) CPU. The ensembles resulting 
from both runs were compared in terms of AMBER 
energy, backbone root-mean–square deviation 
(RMSD) to the mean structure in ensemble 
(mRMSD), the portion of the most favored region in 
the Ramachandran plot, the MolProbity clash 
score20,21, and RMSD to the reference X-ray structure 
(rRMSD). 
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