DOI QR코드

DOI QR Code

Molecular Wire World Having Metal Complexes

  • Choi, Chang-Shik (Department of Oriental Medicine Fermentation, Far East University)
  • Received : 2014.09.03
  • Accepted : 2014.09.10
  • Published : 2014.09.30

Abstract

Development of molecular and supramolecular systems showing efficient photoinduced energy or electron transfer are of current research interest due to their applications in various chemical and biological processes. Various polypyridine metal complexes including Ru(II), Ru(III), Os(II), Pt(II), Fe(II), Re(I), Ir(III) and so on as a metal center introduce for expanding some more understanding of molecular-scale photoelectronics. Their complexes are concisely classified by the types of relay ligands as follows; (a) metal-direct ligand-metal system; dinuclear or trinuclear systems, (b) metal-nonconjugated ligand-metal system and metal-nonconjugated ligand system having flexible/rigid ligand, (c) metal-conjugated ligand-metal system, and (d) conjugated ligand-metal-conjugated ligand system and metal-self assembly ligand-metal system. It is pointed out that the role played by the relay ligands is important in constructing the metal complexes.

Keywords

References

  1. Balzani, V.; Scandola, F. 1991, Supramolecular Photochemistry, Horwood, Chichester, U.K.
  2. Kalyanasundaram, K., 1992, "Photochemistry of Polypyridine and Porphyrin Complexes", Academic Press, London.
  3. Lever, A.B.P., Inorg. Chem., 1990, 29, 1271. https://doi.org/10.1021/ic00331a030
  4. Kalyanasundaram, K., Coord. Chem. Rev., 1982, 46, 159. https://doi.org/10.1016/0010-8545(82)85003-0
  5. Sedden, E. A.; Sedden, K. R. (eds) 1984, The Chemistry of Ruthenium, Elsevier, Amsterdam, Chap. 15.
  6. Creutz, C.; Taube, H., J. Am. Chem. Soc., 1982, 95, 1086.
  7. Hunziker, M.; Ludi, A., J. Am. Chem. Soc., 1977, 99, 7370. https://doi.org/10.1021/ja00464a054
  8. Campagna, S.; Denti, G.; De Rosa, G.;Sabatino, L.; Ciano, M.; Balzani V., Inorg. Chem., 1989, 28, 2565. https://doi.org/10.1021/ic00312a013
  9. Downward, A. J.; Honey, G. E.; Phillips, L. F.; Steel, P. J.,, Inorg. Chem., 1991, 30, 2259. https://doi.org/10.1021/ic00010a007
  10. Johnson, J. E. B.; Ruminski, R. R., Inorg. Chim. Acta,, 1993, 208, 231. https://doi.org/10.1016/S0020-1693(00)85127-0
  11. Vogler, L. M.; Scott, B.; Brewer, K. J., Inorg. Chem., 1993, 32, 898. https://doi.org/10.1021/ic00058a025
  12. Zhu, Y.; Clot, O.; Wolf, M.O.; Yap, F.P.A. J. Am. Chem. Soc., 1998, 120, 1812. https://doi.org/10.1021/ja9732486
  13. Choi, C. -S.; Mishra, L.; Mutai, T.; Araki, K. Bull. Chem. Soc. Jpn., 2000, 73, 2051. https://doi.org/10.1246/bcsj.73.2051
  14. Furue, M.;Yoshidzumi, T.; Kinoshita, S.; Kushita, T.; Nozakura, S.;Kamachi, M. Bull. Chem. Soc. Jpn., 1991, 64, 1632. https://doi.org/10.1246/bcsj.64.1632
  15. Van Wallendael, S.; Shaver, R. J.; Rillema, D. P.; Yoblinski, B. J.; Stathis, M.; Guarr, T. F. Inorg. Chem., 1990, 29, 1761. https://doi.org/10.1021/ic00334a033
  16. De Cola, L.; Balzani, V.; Dux, R.; Baak, M. Supramol. Chem., 1990, 5, 297.
  17. De Cola, L.; Balzani, V.; Barigelletti, F.; Flamigni, L.; Belser, P.; von Zelewsky, A.; Frank, M.; Vogtle, F., Mol. Cryst. Liq. Cryst., 1994, 252, 97. https://doi.org/10.1080/10587259408038215
  18. Barigelletti, F.; Flamigni, L.; Balzani, V.; Collin, J. -P; Sauvage, J. -P.; Sour, A., New. J. Chem., 1995, 19, 793.
  19. Hammarstrom, L.; Barigelletti, F.; Flamigni, L.; Armaroli, N.; Sour, A.; Collin, J. -P,; Sauvage, J. -P. J. Am. Chem. Soc., 1996, 118, 11972. https://doi.org/10.1021/ja962333v
  20. Hopfield, J.J.; Onuchic, J.N.; Beratan, D.N. Science, 1988, 241, 817. https://doi.org/10.1126/science.241.4867.817
  21. Ward, M.D. Chem, Soc. Rev., 1997, 26, 365. https://doi.org/10.1039/cs9972600365
  22. Goulle, V.; Harriman, A.; Lehn, J.-M. Chem. Commun., 1993, 1034.
  23. Choi, C. -S., Bull. Korean Chem. Soc., 2014, 35(2), 663. https://doi.org/10.5012/bkcs.2014.35.2.663
  24. Kobayashi, M.; Masaoka, S.; Sakai, K. Molecules, 2010, 15, 4908. https://doi.org/10.3390/molecules15074908
  25. Strouse, G. F.; Schoonover, J. R.; Duesing, R.; Boyde, S.; Jr. Jones, W. E.; Meyer, T. J., Inorg. Chem., 1995, 34, 473. https://doi.org/10.1021/ic00106a009
  26. Baba, A. I.; Ensley, H. E.; Schmehl, R. H., Inorg. Chem., 1995, 34, 1198. https://doi.org/10.1021/ic00109a030
  27. Shaw, J. R.; Schmehl, R. H., J. Am. Chem. Soc., 1991, 113, 389. https://doi.org/10.1021/ja00002a001
  28. Benniston, A. C.; Grosshenny, V.; Harriman, A.; Ziessel, R., Angew. Chem. Int. Ed. Engl., 1994, 33, 1884. https://doi.org/10.1002/anie.199418841
  29. Grosshenny, V.; Harriman, A.; Ziessel, R., Angew. Chem. Int. Ed. Engl., 1995, 34, 1100. https://doi.org/10.1002/anie.199511001
  30. Mishra, L.; Choi, C. -S.; Araki, K., Chem. Lett., 1997, 447.
  31. Choi, C. -S.; Mishra, L.; Araki, K., J. Inorg. Chem., 1997, 67(1-4), 417.
  32. Hartshorn, R.M.; Barton, J.K. J. Am. Chem. Soc.,1992, 114, 5919. https://doi.org/10.1021/ja00041a002
  33. Diaz, A.N. J. Photochem. Photobiol. A., 1990, 53, 141. https://doi.org/10.1016/1010-6030(90)87120-Z
  34. Otsuki, J.; Tsujino M.; Iizaki, T.; Araki, K.; Seno, M.; Takatera, K.; Watanabe, T., J. Am. Chem. Soc., 1997, 119, 7895. https://doi.org/10.1021/ja970386m
  35. Mishra, L.; Yadaw, A. K.; Choi, C. -S.; Araki, K., Indian J. Chem., 1999, 38A, 339.
  36. Mishra, L.; Yadaw, A. K.; Phadke, R.S.; Choi, C. -S.; Araki, K., Metal Based Drugs, 2001, 8(2), 65. https://doi.org/10.1155/MBD.2001.65
  37. Choi, C.-S.; Jeon, K.-S.; Lee, K.-H.; Yoon, M.; Kwak, M.; Lee, S.W.; Kim. I.T. ., Bull. Korean Chem. Soc., 2006, 27(10), 1601. https://doi.org/10.5012/bkcs.2006.27.10.1601
  38. Choi, C.-S.; Jeon, K.-S.; Lee, K.-H., Bull. Korean Chem. Soc., 2011, 32(10), 3773. https://doi.org/10.5012/bkcs.2011.32.10.3773
  39. Armaroli, N.; Barigelletti, F.; Calogero, G.; Flamigni, L.; White, C.M.; Ward, M.D. Chem. Commun., 1997, 2181