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ABSTRACT 

The robust inventory control problem was proposed and solved by Bertsimas and Thiele (2006). Their results are very 
interesting in that the problem can be solved easily and also the solution possesses nice properties of those found in 
the traditional stochastic inventory control problem. However, their formulation is shown to be incorrect, which in-
validates all of the results given there. In this paper, we propose an alternative formulation of the problem which uses 
a different but practically applicable uncertainty set. Under the newly proposed model, all of the useful properties 
given in Bertsimas and Thiele (2006) will be shown to be valid. 
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1.  INTRODUCTION 

Designing optimal inventory control policy is an 
important issue in supply chain management and has 
been studied extensively. The seminal paper by Clark 
and Scarf (1960) showed that the base-stock policy is 
optimal for the traditional inventory control problem, which 
seeks to find the optimal order quantities over a finite 
planning horizon to minimize the total cost.  

Following Bertsekas (1995), the inventory control 
problem can be defined as follows. For each period (de-
cision epoch) {0, 1, , 1},t T∈ −  a demand tw  is given. 
In each period, we can order as much as we want and 
the cost of ordering the quantity 0u ≥  is given by ( )D u  

K cu= +  when 0u >  and (0) 0.D =  The unit inventory 
holding cost and the unit penalty cost due to shortage are 
given by h and p, respectively, where it is assumed that 
p h≥  holds. For each period t, let tx  be the initial stock 

level of the period ( 0x  is assumed to be given) and tu  
the order quantity. Then the following equation holds:  

  

1 0 0
( )t

t t t t k kk
x x u w x u w+ =

= + − = + −∑ .  (1) 

For a given order quantity vector ,Tu R+∈  the total 
cost can be written as follows: 

 
1

{ 0} 1 10
( ) [ 1 max( , )]

t

T

t u t tt
C u cu K hx px−

> + +=
= + + −∑ .   (2) 

 
The problem is to find the optimal order quantity 

which minimizes the cost function (2) subject to the 
constraints (1). Note that both the initial stock level (1) 
and the total cost (2) only depend on the cumulative sum 
of demands up to each period. 

Usually there exists inherent uncertainty in the de-
mand. If we know the distribution of the random demand, 
we can use dynamic programming approach to minimize 
the expected cost, which is a traditional approach to the 
optimal inventory control problem. However, if only the 
limited information is available on the future demand, 
we cannot use the traditional dynamic programming ap-
proach. In addition, finding the optimal inventory con-
trol policy using the stochastic dynamic programming 
requires much computational effort, which makes it im-
practical to apply in practice. 

Robust optimization approach (Ben-Tal et al., 2009; 
Bertsimas and Sim, 2004) provides an alternative way to 
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handle the uncertainty in demand. In brief, the approach 
finds the robust optimal solution which performs best in 
the worst case. Instead of the full knowledge on the sto-
chastic nature of the demand, it requires only limited 
information which is sufficient to define the set of all 
possible demand realizations (called an uncertainty set). 

Bertsimas and Thiele (hereafter, abbreviated as B&T 
(Bertsimas and Thiele, 2006)) for the first time applied 
the robust optimization approach to the inventory con-
trol problem. They showed that the robust inventory 
control problem can be formulated as a compact MIP 
problem and the robust optimal policy can be obtained 
by solving a deterministic (nominal) inventory control 
problem. In addition, they presented various interesting 
properties of the robust optimal inventory policy which 
are managerially insightful. 

However, as pointed out by Bienstock and Özbay 
(2008), the formulation presented by B&T is only an 
approximation of the true robust inventory control prob-
lem. Hence all the results presented in the paper are not 
technically correct since they are based on the proposed 
(inaccurate) formulation. Bienstock and Özbay (2008) 
presented an exact solution approach to the similar ro-
bust inventory control problem (simple base-stock pol-
icy model) which requires an iterative procedure. How-
ever, in this case, the solution procedure requires rather 
long computation time and all the interesting properties 
on the robust optimal policy are lost. 

This paper presents an alternative approach to the 
problem presented by B&T, which not only allows an 
efficient solution procedure but also preserves all the 
interesting properties on the robust optimal policy. To 
this end, we propose an alternative uncertainty set which 
differs from that used by them. The proposed uncer-
tainty set only requires an estimation of the cumulative 
sums of demands up to each period, which has practical 
advantages in many cases. Then we show that the robust 
inventory problem under the proposed uncertainty set 
can be formulated as the MIP model presented by B&T, 
which leads to the conclusion that all the results pre-
sented in their paper are valid for the newly proposed 
uncertainty set. 

To elaborate our motivation of the study, let us first 
briefly review the robust inventory theory presented by 
B&T.  

1.1 Review on the Robust Inventory Theory 

To model the uncertainty of the demands, B&T as-
sumed that the demand at each period t can be repre-
sented as follows: 

 
ˆt t t tw w w z= + , where 

0
{| | 1, | | , 0, 1, , 1}.

=
∈ = ≤ ≤ Γ = −∑ t

bt t i ti
z U z z t T     (3) 

 
Hence the demand of each period is defined by the 

nominal value ( tw ) and its possible deviation ( ˆ t tw z ), 

where z  is a member of the uncertainty set .btU  The 
parameters tΓ  are used to control the conservativeness 
of the solution, where it is assumed that 1 1t t t+Γ ≤ Γ ≤ Γ + .  

 
By letting 
 

0 0
ˆmax{ | , 0 1, for all },

= =
= ≤ Γ ≤ ≤∑ ∑t t

t k k k t kk i
A w z z z k  

 
B&T showed that the problem can be formulated as 
follows: 

 

(RIP_bt) 
1

0
min ( )

T

t t t
t

cu Kv y
−

=

+ +∑  

0
0

( ( ) ),
=

≥ + − +∑
t

t k k k
k

y h x u w A  0, 1, , 1t T= −   (4) 

0
0

( ( ) ),
=

≥ − − − +∑
t

t i i t
i

y p x u w A  0, 1, , 1t T= −   (5) 

0 ,≤ ≤t tu Mv  {0, 1},∈tv  0, 1, , 1t T= − , 
 
where M is a sufficiently large number.  

 
In the above formulation, the variable ty  denotes 

either the inventory cost or the penalty cost and tv  is a 
binary variable denoting whether an order is made or not. 

The following example shows why the above for-
mulation (RIP_bt) is only an approximation of the true 
robust inventory control problem. 

 
Example 1: Consider a two-period problem defined by 
the following parameters: 

 
0 1 100w w= = , 0 1ˆ ˆ10, 20w w= = , 0 1 1Γ = Γ = . 

 
Hence the possible realization of demand lies in the 

following set: 
  

0 1 0 0 1{ (100 10 , 100 20 ) || | 1, | | | | 1}.= + + ≤ + ≤w z z z z z    (6) 
 
In this case, 0 10A =  and 1 20,A =  which correspond 

to the different realizations in the set (6). It will be 
shown in Section 2 that the true uncertainty set corre-
sponding to the formulation (RIP_bt) is the following 
box uncertainty set: 

    
0 1 0 0 1{( , ) | 90 110, 180 220}.≤ ≤ ≤ + ≤w w w w w    (7) 

 
Note that the above uncertainty set (7) properly 

contains the initially assumed uncertainty set (6). Hence 
the (RIP_bt) only gives an approximation of the true 
robust inventory cost. 

1.2 Motivations of the Research 

As noted above, the formulation (RIP_bt) is only 
an approximation of the true robust inventory control 
problem. To exactly formulate the problem, let us define 
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1 0 0
( )t

t k kk
x x u w+ =

= + −∑ . Then the exact formulation of 
the robust inventory problem is as follows: 

  
0min max ( , )

btu z U C u z≥ ∈ ,             (8) 
1

{ 0}0
( , ) [ 1−

≥=
= +∑ t

T
t ut

C u z cu K  

1 10 0
ˆ ˆmax( ( ), ( ))].+ += =

+ − −∑ ∑t t
t t t t t tk k

h x w z p w z x  
 
Note that the problem (8) is a non-convex optimi-

zation problem. In this paper, we present an alternative 
approach to the robust optimization problem, which not 
only preserves all the properties of the robust optimal 
policy presented by B&T but also results in a very effi-
cient computational procedure. The motivation of the 
research comes from careful observation on the problem 
(8). Note that in the (true) robust optimization problem 
(8), we don’t need data on the individual demand. In-
stead, the information on the cumulative demand up to 
period t (that is, 

0
)

=∑ t
kk

w  is sufficient. This has a sig-
nificant managerial implication, since in many cases the 
sum of the demands is much easier to estimate than the 
individual demands.  

2.  ALTERNATIVE APPROACH TO THE 
ROBUST INVENTORY PROBLEM 

2.1 Uncertainty Set 

Let us assume the cumulative demand of periods 
up to t, ,tD  is defined as follows: 

  

0
,ξ

=
= = +∑ t

t k t tk
D w W  0, 1, , 1.= −t T   (9) 

 
Note that tW  denotes the nominal sum (determinis-

tic term) of demands of the periods up to t and tξ  repre-
sents the (cumulative) deviation from the nominal sum. 
We naturally assume that 

1
0{ }T

t tW −
=  is a nondecreasing se-

quence. Further, we assume the vector 
1
0( )T

t t
−
==ξ ξ  belongs 

to an uncertainty set U defined as follows: 
  

0, 1{ ( , ) | [ , ], 0, 1, , 1}.ξ ξ ξ ξ−≡ = ∈ − = −T t t tU A A t T   (10) 
 
The sequence 

1
0{ }T

t tA −
=  is also assumed to be nonde-

creasing, which reflects the fact that the level of uncer-
tainty increases as the time horizon expands 

There are many alternative methods to define the 
uncertainty set U. One possible approach is to derive 

1
0{ }T

t tW −
=  and 

1
0{ }T

t tA −
=  by using the B&T’s uncertainty set 

.btU  In this case, we can set 
0

t
t ii

W w
=

= ∑  and maxtA =  
0

ˆ{ | }.t
i i bti

w z z U
=

∈∑  Another possible approach is to mo-
del the cumulative demand as a normal distribution and 
then use a suitably chosen confidence interval. Specifi-
cally if we model the cumulative demand up to period t 
as a normal distribution with mean tμ  and standard de-
viation ,tσ  then we can set 

,μ=t tW  ,β σ=t t tA  
where Pr{ } ,μ β σ μ βσ α− ≤ ≤ + =t t t t t t tW  
 

for some suitable value of .α  This approach may be 
more useful than the first one when the information on 
the individual demands is limited.  

Usually, it is much easier (and more accurate) to 
estimate the sum of the demands than the individual 
demands (Simchi-Levi et al., 2007). Also when fore-
casting the sum of the demands, we can more easily 
consider the correlations among the individual demands. 
Thus defining the uncertainty set as above has two prac-
tical advantages over the B&T’s approach. 

 
(1) The estimation of the uncertainty set can be much 

easier since we only need the sum of the demands. 
(2) If we have some historical information, the estimation 

can be more accurate since the sum of the demands 
can absorb fluctuations of individual demands. 
 
One possible critic on the proposed uncertainty set 

U is that it lacks a mechanism to control conservative-
ness of the solution. However, we think that the conser-
vativeness can be controlled in many ways. For example, 
if we use the normal distribution framework, the conser-
vativeness can be controlled by the value of .α  Note that 
increasing the value of α  results in more conservative-
ness.  

2.2 Robust Inventory Problem and Its Formulation 

Let us define 1 0 0

t
t k tk

x x u W+ =
= + −∑ . The robust in-

ventory control problem can be stated as follows: 
  

(RIP) 0min max ( , ),ξ ξ≥ ∈u U C u          (11) 
 

Where 
1

{ 0} 1 10
( , ) [ 1 max ( ( ), ( ))].

t

T

t u t t t tt
C u cu K h x p x

−

> + +=
= + + − −∑ξ ξ ξ  

As noted in the previous section, the above problem is a 
non-convex optimization problem. However, we will 
show that (RIP) can be solved very efficiently. 

To show that, first we consider the inner maximiza-
tion problem in (11). That is, for a given 0,u ≥  

  
max ( , ).ξ ξ∈U C u    (12) 

 
The problem (12) is to find the worst-case realiza-

tion for a given feasible solution u. By ignoring the con-
stant terms, it is equivalent to the following problem: 

  
1

1 10
max [max( ( ), ( ))].ξ ξ ξ−

∈ + +=
− −∑T

U t t t tt
h x p x    (13) 

 
Note that the following relation holds: 
  

1

1 10
max [max( ( ), ( ))]

T

U t t t tt
h x p x

−

∈ + +=
− −∑ξ ξ ξ          (14) 

1

1 10
max max[ ( ), ( ))]

T

U t t t tt
h x p x

−

∈ + +=
≤ − −∑ ξ ξ ξ  
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1

1 10
max[max ( ), max ( ))]

T

U t t U t tt
h x p x

−

∈ + ∈ +=
≤ − −∑ ξ ξξ ξ  

1

1 10
max[ ( ), ( ))].

−

+ +=
= + −∑T

t t t tt
h x A p A x  

 
Now, we will show that the above relation (14) 

holds at equality. For a given 0,u ≥  let us define an 
element in the uncertainty set U as follows: 

 
  

1,  if 
( ) .

,  otherwise          

t t t
t

t

p hA x A
p hu

A

+

−⎧− ≥⎪ += ⎨
⎪
⎩

ξ   (15) 

 

Then note that for all t, if 1 t t
p hx A
p h+

−
≥

+
, 

 
1 1max( ( ( ) ), ( ( ) ))t t t th x u p u x+ +− −ξ ξ  

1 1max( ( ), ( ))t t t th x A p A x+ += + − −  
1 1 1( ) max( ( ), ( )).t t t t t th x A h x A p A x+ + += + = + −  

 
Similar result holds for the other case. Hence we 

have the following relation: 
  

max ( , ) ( , ( ))U C u C u u∈ ≥ξ ξ ξ     (16) 
1

1 10
[max( ( ( ) , ( ( ) ))]T

t t t tt
h x u p u x−

+ +=
= − −∑ ξ ξ  

1
1 10

[max( ( , ( ))],T
t t t tt

h x A p A x−

+ +=
= + −∑  

 
which together with (14) results in the following: 

  
1

1 10
max [max( ( ), ( ))]T

U t t t tt
h x p x−

∈ + +=
− −∑ξ ξ ξ         (17) 

1
1 10

max[ ( ), ( ))].T
t t t tt

h x A p A x−

+ +=
= + −∑  

 
By using the above result (17), we can reformulate 

the problem (RIP) as the following MIP problem: 
 

(RIP) 1

0
min ( )T

t t tt
cu Kv y−

=
+ +∑    

 0 0
( ),

=
≥ + − +∑ t

t i t ti
y h x u W A  for all t,  

 0 0
( ),

=
≥ − − + +∑ t

t i t ti
y p x u W A  for all t,  

 0 ,≤ ≤t tu Mv  for all 0, 1, , 1t T= − . 
    

Note that the above formulation is the exact (not an 
approximation as in the case B&T) formulation of (RIP). 
The results are summarized in the following theorem. 

 
Theorem 1: The robust inventory problem (11) with the 
uncertainty set (9) and (10) can be formulated as an MIP 
problem (RIP). 

 
Since the formulation (RIP) is essentially the same 

as (RIP_bt), we can get the following corollary. 

Corollary 1: The uncertainty set corresponding to (RIP_ 
bt) is that defined by (9) and (10), where  
 

0 0
ˆmax{ | , 0 1,  for all },

= =
= ≤ Γ ≤ ≤∑ ∑t t

t k k k t kk k
A w z z z k  

0

t

t ti
W w

=
= ∑ , for all t. 

3.  PROPERTIES OF THE ROBUST 
OPTIMAL INVENTORY POLICY 

Based on the MIP formulation (RIP_bt), B&T sho-
wed the following properties of the robust inventory policy. 

 
P1: The optimal policy for the formulation (RIP_bt) cor-
responds to the optimal policy for the nominal (determi-
nistic) problem with the modified demand defined as 
follows: 

'
1( ),−

−
= + −

+t t t t
p hw w A A
p h

      (18) 

where 1 0.A− ≡  
 

P2: The robust optimal policy is (s, S) policy. 
 
Since the formulation (RIP) is essentially the same 

as (RIP_bt), we can expect that the same results hold for 
(RIP). However, in the case of our newly defined uncer-
tainty set U, there is no information on the individual 
demands. To get the result corresponding to P1, we can 
define the individual (nominal) demand as follows: 

1,t t tw W W −= −     (19) 

where 1 0.W− ≡  
 
Then by using the same approach to prove the 

property (P1) used in B&T, we can get the following 
result, of which proof is omitted here. 

 
Theorem 2: The robust optimal policy for (RIP) is the 
optimal policy for the nominal problem with the modi-
fied demand 

'
1 1( ) ( ),− −

−
= − + −

+t t t t t
p hw W W A A
p h

   (20) 

where 1 1 0.W A− −= ≡  
 
Hence we can compute the robust optimal ordering 

quantity by solving a deterministic inventory control pro-
blem with the demand given as (20). The corresponding 
problem can be solved efficiently by a dynamic pro-
gramming algorithm (see Park and Lee, 2010). 

The property (P2) follows from the property (P1), 
see Bertsimas and Thiele (2006). Hence in our model, it 
also remains to be valid by Theorem 2. 
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Corollary 2: The robust optimal policy is of the form (s, 
S) policy. 

4.  CONCLUDING REMARKS 

This paper presents an alternative approach to the 
robust inventory problem first introduced by Bertsimas 
and Thiele (2006). Specifically, by proposing an alterna-
tive uncertainty set, we show that we can correctly for-
mulate the problem and preserve all the useful results 
presented in their paper. 

The proposed uncertainty set only requires the es-
timation of the cumulative sum of demands. Since it can 
be much easier and accurate to estimate the sum of de-
mands than the individual demand, the proposed uncer-
tainty set can have practical advantages in many cases. 
In addition, it results in a very efficient solution proce-
dure which is readily adopted in practice.  
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