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ABSTRACT 

We investigate an optimal retirement time and consumption/investment policy of a wage earner who expects to find a 
better investment opportunity after retirement by being freed from other work and participating fully in the financial 
market. We obtain a closed form solution to the optimization problem by using a dynamic programming method under 
general time-separable von Neumann-Morgenstern utility. It is optimal for the wage earner to retire from work if and 
only if his wealth exceeds a certain critical level which is obtained from a free boundary value problem. The wage 
earner consumes less and takes more risk than he would without anticipation of a better investment opportunity. 
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1.  INTRODUCTION 

We study an optimal retirement time and consumption/ 
investment policy of an economic agent who is currently 
a wage earner and seeks to maximize the total expected 
utility from consumption in an infinite-horizon continuous- 
time framework. A particular aspect of our problem is 
that the agent can enlarge his investment opportunity set 
after retirement. The reason for this aspect is that before 
retirement he has only limited time and energy available 
for observing market variables, and therefore, has full 
information only about the assets in a current investment 
opportunity set. Hence he manages a portfolio consisting 
of only the assets in the current investment opportunity 
set according to the key behavioral assumption as in 
Merton (1987): an investor uses a security in constructing 
his optimal portfolio only if the investor knows about the 
security. But after retirement, he can contribute all his 
time and efforts of labor to gathering full information 
about more assets in the financial market. For example, 
studying foreign financial markets or small companies 

may not be feasible during his time as a laborer, but after 
retirement he has full freedom and enough time to study 
these markets. 

We obtain closed forms for the optimal retirement 
policy as well as for the optimal consumption and portfolio 
policy under a fairly general assumption that the agent 
has time-separable von Neumann-Morgenstern utility. 
We show that it is optimal to retire if and only if the 
agent’s wealth exceeds a critical level that is obtained 
from a free boundary value problem. A wage earner stops 
his work and becomes a full-time investor as soon as he 
becomes sufficiently wealthy, an intuitively appealing 
result. An interesting property of the solution is that the 
wage earner consumes less and takes more risk if he 
expects to find a better investment opportunity after 
retiring from labor than he would if he did not have such 
an anticipation. Intuitively, he tries to accumulate his 
wealth fast enough and increase expected growth rate of 
it to exploit a better investment opportunity by sacrificing 
his current consumption and taking more risk. 

The optimal retirement problem can be investigated 

Management Science and Financial Engineering  
Vol 20, No 2, November 2014, pp.13-25 http://dx.doi.org/10.7737/MSFE.2014.20.2.013
ISSN 2287-2043│EISSN 2287-2361│ © 2014 KORMS



Shim: Management Science and Financial Engineering 
Vol 20, No 2, November 2014, pp.13-25, © 2014 KORMS 14
  

 

in the context of a real option. The economic agent has 
an option to invest in broader set of assets and the cost 
associated with exercising the option is his future labor 
income. He will exercise the option only when the benefit 
from exercising the option far exceeds the cost. As we 
said in the above, he will exercise the option only when 
he is sufficiently rich and the benefit of exploiting a 
better investment opportunity surpasses the cost of losing 
his future labor income. 

There has been extensive research in consumption 
and portfolio selection after Merton’s pioneering study 
(Merton, 1969), where closed form solutions are provided 
under constant relative risk aversion (CRRA) and constant 
absolute risk aversion (CARA) utilities. Karatzas et al. 
(1986) provides a closed form solution for a consumption/ 
investment problem under general time-separable von 
Neumann-Morgenstern utility. 

There have been also studies on mixed consumption- 
portfolio-stopping problems. Jeanblac et al. (2004) have 
solved a problem of an agent under obligation to pay a 
debt at a fixed rate who can declare bankruptcy. Choi 
and Koo (2005) have studied the effect of a preference 
change around a discretionary stopping time. 

Among the studies on mixed consumption-portfolio- 
stopping problems, some papers involve retirement time 
as a control variable. For examples, Choi and Shim (2006) 
(Farhi and Panageas (2007), resp.) have studied a problem 
in which a wage earner can choose consumption/in-
vestment policies, and the time to retire considering a 
trade-off between labor income and disutility(leisure, 
resp.). That is, the agent’s motive for retirement in Choi 
and Shim (2006) is not to suffer from disutility asso-
ciated with a job and that in Farhi and Panageas (2007) 
is to enjoy more leisure. In this paper we focus on a rich 
investor’s motive to be freed from other work and de-
vote all his time to management of wealth, that is, to be 
a full-time investor with a better investment opportunity. 

Some papers study the effect of enlargement of the 
investment opportunity set facing an economic agent. 
Choi et al. (2003) have studied a consumption and inve-
stment problem in which the agent’s investment oppor-
tunity set gets larger if the agent’s wealth touches a 
critical level. The critical wealth level in their model is 
given exogenously. However, it is endogenously deter-
mined as a result of an optimal retirement decision in 
this paper. Shim (2011) has studied a consumption and 
investment problem where the agent’s investment op-
portunity set gets enlarged by information gathering for 
which he is required to pay information cost. Shim (2011) 
considered only the case where the agent exhibits con-
stant relative aversion (CRRA), while the closed form 
solution in our model is given under a fairly ge-neral as-
sumption that the agent has time-separable von Neumann-
Morgenstern utility. 

The rest of the paper proceeds as follows. Section 2 
sets up the mixture of optimal retirement and optimal 
consumption/portfolio selection problem. Section 3 cha-
racterize a general solution to the problem and Section 4 

studies properties of the solution. Section 5 illustrate the 
special case where the agent has constant relative risk 
aversion (CRRA) utility. Section 6 concludes.  

2.  THE OPTIMIZATION PROBLEM 

Before stating our problem we state a standard con-
sumption/portfolio selection problem in infinite time 
horizon which is called Merton’s problem. Although the 
existing literature (Merton, 1969, 1971; Karatzas et al., 
1986) already described and solved Merton’s problem, 
we state it again for convenience of exposition in our 
model: 

There are one riskless asset and m risky assets ava-
ilable in the market. That is, the investment opport-unity 
set consists of these assets. The risk-free rate is a con-
stant > 0r > 0r  and the price 0 ( )p t  of the riskless asset 
follows a deterministic process  

 
0 0 0 0( ) = ( ) , (0) = .dp t p t rdt p p  

 
The price ( )jp t  of the j-th risky asset follows a geo-

metric Brownian motion  
 

=1
( ) = ( ){ ( )},

(0) = , = 1, , ,

m

j j j jk k
k

j j

dp t p t dt dw t

p p j m

α + σ∑  

 
where 1( ) = ( ( ), , ( ))mt w t w tw  is an m-dimensional stan-
dard Brownian motion defined on the underlying pro-
bability space ( , F, P).Ω  The market parameters, jα ’s and 

jkσ ’s for , = 1, , ,j k m  are assumed to be constants. Let 
=0(F ) .t t
∞

 be the augmentation under p of the natural fil-
tration generated by the standard Brownian motion 

=0( ( )) .tt ∞w  We assume that the matrix , =1= ( ) ,m
ij i jD σ  called 

the volatility matrix, is nonsingular, i.e., there is no re-
dundant asset among the m risky assets. Hence := DDΤΣ  
and 

1−Σ  are positive definite. Let 1= ( , , )mα α α  be the 
row vector of returns of the risky assets in the current 
investment opportunity set and = (1, , 1)m1  the row vec-
tor of m ones. We assume that mr− 1α  is not the zero 
vector. 

Let 1, ,= ( , , )t t m tπ π π  be the row vector of amounts 
invested in the risky assets at time t and tc  be the con-
sumption rate at time t. The consumption rate process 

=0:= ( )t tc ∞c  is a nonnegative process adapted to =0(F )t t
∞

 and 
satisfies 

0
< ,

t
sc ds ∞∫  for all 0,t ≥  a.s. The portfolio pro-

cess =0:= ( )π π ∞
t t  is adapted to =0(F ) ∞t t  and satisfies 

2

0
< ,

t
s ds ∞∫ π  for all 0,t ≥  a.s. 
The agent’s wealth process tx  with initial wealth 

0 = 0x x ≥  evolves according to  
 

= ( ) ( )t m t t tdx r dt rx c dtα π Τ− + −1   (1) 
( ),    0.t Dd t for tπ Τ+ ≥w  
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The agent faces the nonnegative wealth constraint  
 

0, 0 . .tx for all t a s≥ ≥    (2) 
 

A pair of control ( , )c π  satisfying the constraint (2) is 
said to be admissible at x. Let ( )MA x  denote the set of 
admissible controls at x. 

Let 
1

1 := ( )mR D r− Τ− 1α  be the Sharpe ratio of the in-
vestment opportunity set and define the positive con-
stant 1κ  by 

 
2 1

1 1:= / 2 = ( ) ( ) / 2 > 0,m mR r r− Τ− Σ −1 1κ α α  
 

where the inequality comes from the fact that 
1−Σ  is 

positive definite and mrα − 1  is not the zero vector. The 
optimization problem (Merton’s problem) is to maximize 
the expected total reward  

 

( , ) 0
( ) := E exp( ) ( )x tV x t U c dt

∞⎡ ⎤−⎢ ⎥⎣ ⎦∫c π β   (3) 

 
over all ( , ) ( )MA x∈c π  where E x  denotes the expectation 
operator with initial wealth 0 = 0.x x ≥  The function U, 
called a utility function, is real-valued on (0, ),∞  and 

> 0β  is a subjective discount rate. We assume that U is 
strictly increasing, strictly concave and three times con-
tinuously differentiable on (0, )∞  with ( ) = 0lim '

c U c↑∞  as 
in Karatzas et. al. (1986) and Choi and Shim (2006). 

The quadratic equation of λ   
 

2
1 1( ) = 0r r− − − −κ λ β κ λ   (4) 

 
has two distinct solutions < 1− −λ  and > 0.+λ  
The value function, ( , )( ) = sup{ ( ) : ( , ) ( )},M MV x V x A xπ π ∈c c  
of Merton’s problem is finite and attainable by an ad-
dmissible strategy for > 0x (See Karatzas et al., 1986) if  

 
<   > 0.

( ( ))c

d for all c
U

∞

−
∞

′
∫ λ

θ

θ
  (5) 

 
(0) = (0) /MV U β  is also attainable where 0(0) := limcU ↓  

( )U c  which may be .−∞   
 

Remark 2.1: Note that the value function is uniquely 
determined by parameters ,r β  and 1.κ  Therefore, for 
given r  and ,β  The value function is uniquely deter-
mined by the Sharpe ratio vector 1R  or the constant 1κ  
(See Karatzas et al., 1986).  

 
Now we turn to our model. 
We consider the same economic agent as in the 

above Merton’s problem except that he is currently a 
wage earner(therefore receives labor income) and ex-
pects to find a better investment opportunity set after re-
tirement by being freed from other work and partici-
pating fully in the financial market. 

Before retirement, the agent has full information 
only about the riskless asset and m risky assets described 
in the above Merton’s problem. That is, we assume that 
the current investment opportunity set is the investment 
opportunity set of the above Merton’s problem. The agent, 
before retirement, manages a portfolio consisting of only 
the assets in the current investment opportunity set ac-
cording to the key behavioral assumption as in Merton 
(1987) we mentioned in Section 1. 

After retirement, the agent can manage the assets in 
an enlarged investment opportunity set since he can de-
vote his time and efforts to gathering full information 
about more risky assets in the market. 

The prices of the risky assets in the enlarged inve-
stment opportunity set follow geometric Brownian mo-
tions with constant market coefficients where the cor-
responding volatility matrix is invertible as in the cur-
rent investment opportunity set. Since the market coef-
ficients of the enlarged investment opportunity set are 
realized after retirement, they are not fully known to the 
agent until retirement. 

Let 2R  be the Sharpe ratio vector of the enlarged 
investment opportunity set and let 

2
2 2= / 2.Rκ  Of co-

urse 2κ  is not fully known to the agent before retirement. 
However it is assumed to be partially known in the sen-
se that its probability distribution is known to the agent 
before retirement. Since the enlarged investment oppor-
tunity set contains the current investment opportunity set, 
we have 2 1P( ) = 1,κ κ≥  which can be proved by using 
Remark 2.1 in Shim (2011). Since 2κ  is a function of 
market parameters in the enlarged investment opportu-
nity set and the current market parameters are constant, 
it is reasonable to impose the following assumption.  

 
Assumption 2.1: F∞  is independent of 2κ  where P :=∞  

0( P ).t tσ ≥∪   
 
Thus the improvement of information about 2κ  oc-

curs discretely only by the event of retirement which per-
mits the agent to know the realized 2.κ  

Let τ  be the retirement time which is an Ft -stop-
ping time and is another control variable. We assume 
that the random variable 2κ  is realized to the agent im-
mediately after .τ  The agent receives labor income with 
constant rate > 0ε  until retirement. Since the present 
value of the future income stream is 

0
/ = ,rtr e dtε ε

∞ −∫  the 
wealth constraint the agent faces before retirement is  

 
/ 0 < . .tx r for t a sε τ≥ − ≤   (6) 

 
After retirement, as in (2), the agent faces the non-

negative wealth constraint  
 

0, . .tx for t a sτ≥ ≥    (7) 
 
In particular, the agent’s wealth xτ  at the retirement 

time τ  should satisfy  
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0.x ≥τ    (8) 
 

Note that after retirement the agent faces the new Merton’s 
problem with the enlarged investment opportunity set. 
The quadratic equation of η   

 
2

2 2( ) = 0r r− − − −κ η β κ η   (9) 
 

has two distinct solutions < 1− −η  and > 0.+η  We assume 
(5) about the current opportunity set and the cor-res-
ponding condition about the enlarged opportunity set.  
 
Assumption 2.2: For all 0c >  

 

<   < = 1.
( ( )) ( ( ))c c

d dand
U U

λ η
θ θ

θ θ

∞ ∞

− −

⎧ ⎫⎪ ⎪∞ ∞⎨ ⎬
′ ′⎪ ⎪⎩ ⎭

∫ ∫P  

  
An intuitively obvious fact is that after retirement 

the optimizing agent will follow the optimal consum-
ption and investment policies of the new Merton’s pro-
blem with the enlarged investment opportunity set. The-
refore, we can focus on the retirement time τ  and con-
sumption/investment policies =0 =0( , ) := (( ) , ( ) )τ τπ πt tt tcc   
until .τ  

The agent’s wealth process =0( )t tx τ
 until retirement 

with initial wealth 0 = /x x r≥ −ε  evolves according to 
  

= ( ) ( ) ( ).t m t t t tdx r dt rx c dt Dd tΤ Τ− + − + +1 wα π ε π  (10) 
 
We call a triple of the above control ( , , ) = ( ,τ π τc  

=0 =0( ) , ( ) )t t t tc τ τπ  satisfying (6) and (8) with 0 = /x x r≥ −ε  
admissible at x. Let ( )A x  denote the set of admissible 
controls at x. If 0 = = / ,x x rε−  the problem becomes tri-
vial. Therefore, we just consider the case where 0 = >x x  

/ .rε−  Letting 2 ( )V ⋅  be the value function of Merton’s 
problem with the enlarged opportunity set, our optimi-
zation problem is to maximize the expected total reward  

 

( , , ) 0
( ) := exp ( ) ( )x tV x t U c dt⎡ −⎢⎣∫c

τ
τ π βE   (11) 

2 { < }exp( ) ( )V x ∞ ⎤+ − ⎦1τ τβτ  
 

over all admissible policies ( , , ) ( )A x∈cτ π  with initial 
wealth 0 = > / .x x rε−  For later use, we let ( )I ⋅  be the 
inverse function of ( ).'U ⋅  By Remark 2.1, 2 ( )V x  can be 
rewritten in a parametric form 2 2( ) = ( ; ) 0,V x L x for xκ ≥  
and we have  

 
2 { < }[exp ( ) ( ) ]x V xτ τβ τ ∞− 1E  

2 { < }= [exp ( ) ( ; ) ]x L xτ τβ τ κ ∞− 1E  

2 { < }= E [E [exp( ) ( ; ) | F ]]x x L xτ τβ τ κ ∞ ∞− 1  

{ < } 2= E [exp( ) E [ ( ; ) | F ]],x x L xτ τβτ κ∞ ∞− 1  
 

where the second equality comes from the law of iterated 

expectations (or the tower property) and the third eq-
uality from the fact that { < }exp( ) τβτ ∞− 1  is F∞  measurable. 
Furthermore, we have  

2 2 = 2 =E [ ( ; ) | F ] = E [ ( ; ) | F ] | = E [ ( ; )] | ,x x z x x z xL x L z L zτ τ τ
κ κ κ∞ ∞

 
where the first equality holds since xτ  is F∞  measurable, 
and the second by Assumption 2.1. Therefore, we have  

2 { < } { < } 2[exp( ) ( ) ] = [exp( ) ( )],x xV x V x∞ ∞− −1 1τ τ τ τβτ βτE E  

where 2 ( )V ⋅  is the function defined by  

2 2( ) = E [ ( ; )]  0.xV z L z for z ≥κ   (12) 

Note that z is a real number and the only involved ran-
dom variable is 2κ  when taking the expectation operator 
E x  in (12). Thus (11) can be rewritten as  

 

( , , ) 0
( ) := [ exp ( ) ( )x tV x t U c dt−∫c

τ
τ π βE   (13) 

2 { < }exp( ) ( ) ].V x ∞+ − 1τ τβτ  
 

As is shown in Karatzas et al. (1986), 2 2( ) = ( ; )V z L z κ  is 
twice continuously differentiable function of > 0z  for 
each 2κ (See Karatzas et al., 1986).  
 
Assumption 2.3: The function 2 ( )V z  is twice continu-
ously differentiable for > 0.z   

 
It is obvious that 2 ( )V z  is strictly increasing and st-

rictly concave for > 0z  since 2 2( ) = ( ; )V z L z κ  is strictly 
increasing and strictly concave function of > 0z  for each 

2κ (See Karatzas et al., 1986). 
Let 

*( )V x  be the value function, that is,  

*
( , , )( ) = sup{ ( ) : ( , , ) ( )} V x V x A xτ π τ π ∈c c   (14) 

> / .for x r−ε  

3.  A Solution under a General Utility Class 

In this section we solve the problem under general 
utility class. The Bellman equation for <t τ  and >x  

/ rε−  is given by 

0,
( ) = {( ) ( ) ( ) ( )max T ' '

m
c

V x r V x rx c V x
π

β α π ε
≥

− + − +1  (15) 

1 ( ) ( )}.
2

T ''V x U cπ π+ Σ +  

We first consider the case where (0) = .∞'U  
Let  

0 0
1

1 ( ( ))( ) =
( ) ( ( ))

cc U c dX c
r U

λ

λ
θ

κ λ λ λ θ

+

++ − +

⎧ ′⎪− ⎨
− ′⎪⎩

∫   
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( ( )) , > 0
( ( ))c

U c d c
rU

λ

λ
θ ε

λ θ

− ∞

−−

⎫′ ⎪+ −⎬
′ ⎪⎭

∫     (16) 

 
and let  

 

0 0
1

( ) 1 ( ( ))( ) =
( ) ( ( ))

' c

'

U c U c dJ c
U

ρ

λ
θ

β κ ρ ρ ρ θ

+

++ − +

⎧⎪− ⎨
− ⎪⎩

∫  

( ( )) , > 0
( ( ))

'

c '

U c d c
U

ρ

λ
θ

ρ θ

− ∞

−−

⎫⎪+ ⎬
⎪⎭

∫        (17) 

 
where = 1ρ λ+ ++  and = 1 .ρ λ− −+  For ˆ 0,B ≥  we define a 
function 0

ˆ ˆ( ; ) = ( ( )) ( )X c B B U c X c
λ−′ +  for > 0.c  We have 

the following lemma. 
 

Lemma 3.1: If (0) = ,'U ∞  then  
 

0

( ) = 0,lim
( )'c

U c
U c↓

    (18) 

 
00

( ( )) = 0lim
( ( ))

c'
'c

dU c
U

λ
λ

θ

θ
+

+↓
∫    (19) 

and  

0
( ( )) = 0.lim

( ( ))
'

c 'c

dU c
U

λ
λ

θ

θ

∞
−

−↓
∫   (20) 

 
Proof: When (0)U  is finite, (18) trivially holds. When 

0(0) = , ( ) / ( ) 0.limsup '
cU U c U c↓−∞ ≤  For every > 0δ  and 

0 < < , ( ) ( ) ( )( ).'c U c U U c cδ δ δ≥ − −  Therefore,  
 

0 0
( ) / ( ) ( ( ) / ( ) ) = .liminf liminf' '

c c
U c U c U U c cδ δ δ

↓ ↓
≥ − + −  

 
Since > 0δ  is arbitrary, 

0
( ) / ( ) 0.liminf '

c
U c U c

↓
≥  

Hence (18) holds. Since  
 

00
0 ( ( ))liminf

( ( ))

c'
'c

dU c
U

λ
λ

θ

θ
+

+↓
≤ ∫  

00
( ( ))limsup

( ( ))

c'
'c

dU c
U

λ
λ

θ

θ
+

+↓
≤ ∫  

0
= 0.limsup

c
c

↓
=  

 
(19) holds. Finally, since, for every > 0,δ   

 

0
0 ( ( ))liminf

( ( ))
'

c 'c

dU c
U

λ
λ

θ

θ

∞
−

−↓
≤ ∫  

0
( ( ))limsup

( ( ))
'

c 'c

dU c
U

λ
λ

θ

θ

∞
−

−↓
≤ ∫  

0 0

( )( ) ( ( ))limsup limsup
( ) ( ( ))

δ λ λ
λδ

θθ
θ θ

∞
− −

−↓ ↓
≤ +∫ ∫

'
'

'c 'c c

U c dd U c
U U

     
0

( )limsup
c

cδ
↓

≤ −  

= ,δ  

(20) holds.  □ 
 

By (19) and (20), we have  
 

0
ˆ ˆ(0; ) := ( ; ) = /lim

c
X B X c B rε

↓
−  if (0) = .'U ∞  

 
Similarly to (6.11) in Karatzas et al. (1986), ( ;limc X c↑∞  

ˆ ) = .B ∞  Using the relation 1= / ,rλ λ κ+ − −  we have  
 

1ˆ ˆ( ; ) = ( ( )) ( )' ' ''X c B B U c U c
λ

λ
−−

− −  

1 1

0
1

( ) ( ( )) ( ( )) .
( ) ( ( )) ( ( ))

'' c' '
c' '

U c d dU c U c
U U

λ λ
λ λ

θ θ
κ λ λ θ θ

− −+ −

+ −+ −

∞⎧ ⎫⎪ ⎪+⎨ ⎬
− ⎪ ⎪⎩ ⎭

∫ ∫  

 
Since ( )U ⋅  is strictly concave, ˆ( ; ) > 0'X c B  for all > 0.c  
Hence ˆ( ; )X B⋅  is strictly increasing and maps [0, )∞  
onto [ / , )rε− ∞  so that its inverse function, ˆ( ; ),C B⋅  ex-
ists and is also strictly increasing and maps [ / , )rε− ∞  
onto [0, ).∞  Define a function : (0, )G R∞ →  by  
 

2 0 2( ) = ( ){ ( ( ( ))) }' 'G z V z X I V z zλ− −    (21) 

0 2 2{ ( ( ( ))) ( )}.'J I V z V zρ−− −  
 
Assumption 3.1: There exists 

* > 0z  such that  
 

*( ) = 0G z         (22) 
and * *

0 2( ( ( ))) > 0.'z X I V z−      (23) 
 

Remark 3.1: As mentioned in Section 2, 2 1P ( ) = 1κ κ≥ . 
Assumption 3.1 is equivalent to the assumption that 

2 1P( > ) > 0κ κ  if the utility function is given in the CRRA 
class(See Section 5).  

  
Let  

* * * *
2 0 2

ˆ = ( ( )) { ( ( ( )))}.' 'B V z z X I V z
λ− − −     (24) 

Then, by (23) we have 
*ˆ > 0B  and  

* * *
2

ˆ( ( ( )); ) = .'X I V z B z      (25) 

For ˆ 0,A ≥  we define  

0
ˆ ˆ( ; ) = ( ( )) ( )'J c A A U c J c

ρ− +    (26) 

for > 0c . 
Now, define a function : ( / , )ε− ∞ →V r R  by  

* * *ˆ ˆ( ) = ( ( ; ); )  < < ,λ ε
ρ
−

−
−V x J C x B B for x z

r
 (27) 

and  

*
2( ) = ( )  .V x V x for x z≥   (28) 
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As in Lemma 8.7 of Karatzas et al. (1986), we have  
 

(0)( ) = .lim
x

r

UV x
ε β↓−

    (29) 

 
By (25), we have  

* * * *
2

*
ˆ ˆ( ; ) = ( ; ) = ( ( )),lim '

x z
C x B C z B I V z

↑

    (30) 

so that  

* *
2

*
ˆ( ) = ( ( ( )); ).lim '

x z
V x J I V z Bλ

ρ
−

−↑

    (31) 

By (27), (29), we have  
 

* * * * *
2 2 0 2 0 2( ) = ( ){ ( ( ( ))) } ( ( ( )))' ' 'V z V z X I V z z J I V zλ

ρ
−

−
− − +  

* * *
2 0 2

ˆ= ( ( )) ( ( ( )))' 'B V z J I V z
ρλ

ρ
− −

−
+  

* *
2

ˆ= ( ( ( )); ).λ
ρ
−

−

'J I V z B  

 
Hence by (31), we get  

 
*

2
*

( ) = ( ).lim
x z

V x V z
↑

    (32) 

 
We have the following lemma.  
 
Lemma 3.2: When (0) = , ( )'U V x∞  defined by (27) and 
(28) is strictly increasing and strictly concave for >x  

/ ,rε−  and satisfies the Bellman Equation (15) for / rε−  
*< < .x z  

 
Proof: By calculation, we have  

* *

* *
* *

ˆ ˆ( ( ; ); )
ˆ ˆ( ( ; ); ) = ˆ ˆ( ( ; ); )

λ
λ ρ
ρ

−

− −

−

∂
∂

'

'

J C x B B
J C x B B

x X C x B B
       (33) 

*ˆ= ( ( ; ))'U C x B       (34) 
> 0, > / .x rε−       (35) 

 
Hence by (32) and the fact that 2 ( )V ⋅  is strictly increa-
sing, ( )V x  is strictly increasing for > / .x rε−  By (34) 
and (30) we have  

* *
2 2

* *
( ) = ( ( ( ))) = ( ) = ( ).lim lim' ' ' ' '

x z x z
V x U I V z V z V x

↑ ↓

     (36) 

We have  

* * *ˆ ˆ( ) = ( ( ; )) ( ; ) < 0  / < < .ε−'' '' 'V x U C x B C x B for r x z  (37) 

This inequality and (36) imply that ( )V ⋅  is strictly 

concave for > /x r−ε  since 2 ( )V ⋅  is also strictly con-
cave. For 

*/ < <r x z−ε  applying ( )V ⋅  in the Bellman 
equation (15) and maximizing over investment in risky 
assets gives  

 
1( )= ( ) .

( )

'

m''
V x r
V x

π α −− − Σ1  

 
Hence the Bellman equation (15) becomes  

 
2

1
0

( ( ))( ) = {( ) ( ) ( )}.max
( )

'

'' c

V xV x rx c V x U c
V x ≥

′− + − + +β κ ε  (38) 

 
By (34) and (37), (38) takes the form  

 
* 2 * *

1 *

ˆ ˆ ˆ( ( ( ; ))) ( ( ; ); )( ) = ˆ( ( ; ))

' '

''
U C x B X C x B BV x

U C x B
β κ−  

* *ˆ ˆ( ( ; ) ) ( ) ( ( ; ))'rx C x B V x U C x Bε+ − + +  

 
for */ < < ,r x zε−  which is equivalent to  

 
2 *

*
1

ˆ( ( )) ( ; )ˆ( ; ) =
( )

λβ κ
ρ
−

−
−

' '

''
U c X c BJ c B

U c
    (39) 

*ˆ( ( ; ) ) ( ) ( )'rX c B c U c U cε+ − + +  
 

for 
*

20 < < ( ( )'c I V z  by (30). By calculation and using the 
relation 1= / ,ρ ρ β κ+ − −  (39) can be shown to hold for 

*
20 < < ( ( )).'c I V z  Hence ( )V ⋅  satisfies the Bellman Eq-

uation (15) for 
*/ < < .r x zε−   □ 

 
As is shown in (37), 

2 *( / , ).V C r zε∈ −  By (36) and As-
sumption 2.3, 1 2 * *( ) ( / , ) (( / , ) ( , )),V C r C r z zε ε⋅ ∈ − ∞ ∩ − ∪ ∞  

* ( )lim ''
x z V x→ +  and * ( )lim ''

x z V x→ −  exist and finite. 
 

Let’s consider the strategy for 0t ≥   

* 1( )ˆ= , = ( ; ), = ( ) .
( )

'
t

t t t m''
t

V xc C x B r
V x

τ π α −∞ − − Σ1  (40) 

As in Equation (7.4) in Karatzas et al. (1986), the 
stochastic differential equation for 

*ˆ{ := ( ; ), 0}t tc C x B t ≥  
becomes  

1= ( ) ( ),t t tdy r y dt y R d tΤ Τ− − − wβ    (41) 

where := ( ).'
t ty U c  Hence  

 
0 1 1( ) = = ( )exp[ ( ) ( )],' '

t tU c y U c r t R tΤ Τ− − + − wβ κ  
 

so that we get  
 

0 1 1= ( ( )exp[ ( ) ( )]), 0.'
tc I U c r t R t tβ κ Τ Τ− − + − ≥w  

 
Therefore, if (0) = ,'U ∞  then, with strategy (40),  
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inf { 0 : = / } = inf { 0 : = 0}t tt x r t c≥ − ≥ε  (42) 
= inf { 0 : = } = , . .tt y a s≥ ∞ ∞  

 
We use the following notation  

:= inf{ 0 : }.tT t x≥ ≥ξ ξ    (43) 

Now we consider the following strategy ( * * *, ,cτ π ):  
 

** = ,zTτ    (44) 
* * * 1 *( )ˆ= ( ; ), = ( ) , 0 < .

( )
π α τ−− − Σ ≤

'
t

t t t m''
t

V xc C x B r t
V x

1  (45) 

 
With this strategy the wealth process does not touch 

/ r−ε  before retirement by (42). 
For 

*
0 > 0c (or equivalently > /x r−ε ), let  

*
0 * * *( , , )

( ) := ( )H c V x
cτ π

         (46) 

*
* *

2 * *0 { < }
= exp( ) ( ) exp( ) ( ) .x tt U c dt V x

∞

⎡ ⎤
− + −⎢ ⎥

⎣ ⎦
∫ 1
τ

τ τ
β βτE  

If 
* *
0 2( ( ))'c I V z≥ (or equivalently 

*x z≥ ), then 
* = 0.τ  Thus  

* * * *
0 2 0 2( ) = ( ) ( ( )) ( ).'H c V x for c I V z or equivalently x z≥ ≥  (47) 

For 
* *
0 20 < < ( ( ))'c I V z (or equivalently 

*/ < <r x z−ε ), (46) 
can be rewritten as  

 
*

* *
0 * * *( , , ) 0

( ) = ( ) = E exp( ) ( )x tH c V x t U c dt
⎡

−⎢
⎣
∫c

τ

τ π
β   

* *
2exp( ) ( ) .V z ⎤+ − ⎦βτ  

 
Note that since ( ; 0)C ⋅  is strictly increasing and maps 
( / , )r− ∞ε  onto (0, ),∞  there exists ˆ > /x r−ε  such that  
 

* *
0

ˆ ˆ= ( ; ) = ( ; 0).c C x B C x     (48) 
 

When retirement time τ  is enforced to be infinite, that is, 
the agent has no option to retire, it can be shown, as in 
Karatzas et al. (1986), that the optimal consumption stra-
tegy { 0}ˆ( )t tc ≥  with initial wealth ˆ > /x r−ε  satisfies  

 
1 1ˆ ˆ= ( ( ( ; 0))exp[ ( ) ( )])β κ− − + − T' T

tc I U C x r t R tw  
 
and the value function 0 0

ˆ ˆ( ) := E exp( ) ( )tV x t U c dt
∞⎡ ⎤−⎢ ⎥⎣ ⎦∫ β  in 

this case is well defined and finite. By (48), 
*ˆ =t tc c  for 

all 0 < .t τ≤  Hence it follows that 
*
0( )H c  is well-defined 

and finite for 
* *
0 20 < < ( ( ))'c I V z (or equivalently / <r xε−  

*< z ). Define  

*

0 0 0
( ) = ( ( )) = E exp( ) ( ( ))

τ
β

⎡
Ψ −⎢

⎣
∫x ty H I y t U I y dt  

* *
2exp( ) ( )βτ ⎤+ − ⎦V z  

 
for 

* *
2 2 0( ) = ( ( ( ))) < < (0) =' ' ' 'V z U I V z y U ∞  where 

*= ( )'
t ty U c  

so that ty  satisfies the stochastic differentiable equation 
(41) for 

*0 t≤ ≤ τ  with 
*

0 0= ( ).'y U c  By Theorem 13.16 of 
Dynkin (1965) (Feynman-Kac formula), Ψ  is 

2C  on 2( 'V  
*( ), )z ∞  and satisfies  

 
2

1( ) = ( ) ( ) ( ) ( ( ))' ''y r y y y y U I yΨ − − Ψ + Ψ +β β κ  (49) 
 
for 

*
2 0( ) < <'V z y ∞  with **( ) 22

( ) = ( ).lim 'y V z y V z↓ Ψ  Hence H 
is 

2C  on 
*

2(0, ( ( )))'I V z  and satisfies  
 

1 2
( ) ( ) ( )( ) = ( )
( ) ( ( ))

' ' '''
'

'' ''
U c U c U cH c r H c
U c U c

⎡ ⎤
− − +⎢ ⎥

⎢ ⎥⎣ ⎦
β β κ  (50) 

2

1
( ) ( ) ( )
( )

'
''

''
U c H c U c
U c

⎛ ⎞
+ +⎜ ⎟⎜ ⎟

⎝ ⎠
κ  

 
for 

*
20 < < ( ( ))'c I V z  with **( ( )) 22

( ) = ( ).lim 'c I V z H c V z↑  The 

general solution to the Equation (50) is  
 

*
2

ˆ( ( )) ( ; ) 0 < < ( ( )).' 'A U c J c A for c I V z+ +
ρ  

 
Hence, for 

*
20 < < ( ( )),'c I V z   

 
ˆ( ) = ( ( )) ( ; )'H c A U c J c A+ +

ρ  
 
for some A  and Â  such that  
 

* * *
2 2 2

*( ( ))2

ˆ( ) = ( ( ( ( )))) ( ( ( )); ) = ( ).lim ' ' '

'c I V z
H c A U I V z J I V z A V z+

↑
+

ρ

 
As in Theorem 8.8 of Karatzas et al. (1986), it is shown 
that = 0A  when (0) ='U ∞  so that for 

*
20 < < ( ( )),'c I V z  

ˆ( ) = ( ; )H c J c A  for some Â  such that  
 

* *
2 2

*( ( ))2

ˆ( ) = ( ( ( )); ) = ( ).lim '

'c I V z
H c J I V z A V z

↑

      (51) 

 
Using (22), (25) and (51), we get 

*ˆ ˆ= /A B− −λ ρ  so that  
 

* * * * *
0 0

ˆ ˆ ˆ( ) = ( ; / ) = ( ( ; ); / )λ ρ λ ρ− − − −H c J c B J C x B B  (52) 
 
for 

* *
0 20 < < ( ( ))'c I V z (or equivalently 

*/ < <r x z−ε ). This 
equality and (47) imply  
 

*
0 * * *( , , )

( ) = ( ) = ( ) > / .H c V x V x for x r−
cτ π

ε     (53) 

 
Now we give a solution to the problem when (0) ='U ∞  
in the following theorem.  
 
Theorem 3.1: Suppose that (0) = .'U ∞  Assume that  
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*
2 ( ) ( ) 0 < .V x V x for x z≤ ≤     (54) 

 
If  
 

{2 2 2
0,

( ) ( ) ( ) ( ) ( )max
π

β α π εΤ

≥
≥ − + − +' '

m
c

V x r V x rx c V x1  (55) 

*
2

1 ( ) ( )  ,
2
π π Τ ⎫+ Σ + ≥⎬

⎭
''V x U c for x z  

 
then the optimal value function is ( )V x  defined by (27) 
and (28), and an optimal strategy is given by (44) and 
(45).  
 
Proof: Fix > / .x rε−  Let ( , , ) ( )A x∈cτ π  be arbitrary. Cho-

ose < <x ∞ξ  and define { }2

0
= inf 0 : = .

t
n sS t ds nπ≥ ∫  With 

the notation in (43) put =n nT S n∧ ∧ ∧ξτ τ  so that n ↑τ τ  
as ↑ ∞ξ  and .n ↑ ∞  With a > 0δ  let =  0.t tz x for tδ+ ≥   
From the fact that ( )V x  defined by (27) and (28) satis-
fies the Bellman equation (15) for 

*/ < < ,r x zε−  by (55), 
and by using generalized Itô’s rule, we get  
 

0
E exp( ) ( )n

x tt U c dt⎡ ⎤−⎢ ⎥⎣ ⎦∫
τ

β  

0
E exp( ) ( ) ( ) ( )'n

x t m t tt V z r V zΤ⎡ ⎡≤ − − −⎢ ⎣⎣∫ 1
τ

β β α π  

1( ) ( ) ( )
2

' ''
t t t t t trz c V z V z dtΤ ⎤⎤− − + − Σ ⎥⎥⎦ ⎦

ε π π  

0
= E [ (exp ( ) ( )) exp ( ) ( ) ( )'n

x t t td t V z t V z Dd tΤ⎡ ⎤− − + −⎢ ⎥⎣ ⎦∫ w
τ

β β π

0
E exp( ) ( )'n

x tr t V z dt⎡ ⎤+ − −⎢ ⎥⎣ ⎦∫
τ

δ β  

= E exp( ) ( ) ( )x n n
V x V x⎡ ⎤− − + + +⎢ ⎥⎣ ⎦τβτ δ δ  

0
E exp ( ) ( )'n

x tr t V x dt⎡ ⎤+ − − +⎢ ⎥⎣ ⎦∫
τ

δ β δ  

E exp( ) ( ) ( ),x n n
V x V x⎡ ⎤≤ − − + + +⎢ ⎥⎣ ⎦τβτ δ δ  

 
where the last inequality comes from the fact that 

'V  
( ) > 0x  for all > / .x rε−  Hence  
 

0
( ) E exp( ) ( )

τ
δ β⎡ ⎤+ ≥ −⎢ ⎥⎣ ⎦∫ n

x tV x t U c dt  

E exp( ) ( )x n n
V x⎡ ⎤+ − +⎢ ⎥⎣ ⎦τβτ δ  

0
= E exp( ) ( )n

x tt U c dt⎡ ⎤−⎢ ⎥⎣ ⎦∫
τ

β  

{ = }E exp( ) ( ) .x n n
V x ∞

⎡ ⎤+ − +⎢ ⎥⎣ ⎦
1τ τβτ δ  

 
By applying the monotone convergence theorem to 
 

0
E exp( ) ( )n

x tt U c dt±⎡ ⎤−⎢ ⎥⎣ ⎦∫
τ

β , we get  

0 0
E exp( ) ( ) E exp( ) ( )  n

x t x tt U c dt t U c dt
τ τ

β β⎡ ⎤ ⎡ ⎤− → −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦∫ ∫  

.as and n↑ ∞ ↑ ∞ξ  
 
Since ( ) ( / ) > ,

n
V x V rτ δ ε δ+ ≥ − + −∞  by Fatou’s lemma,  

 

{ < }
,

E exp( ) ( )liminf x n nn
V x ∞

↑∞ ↑∞

⎡ ⎤− +⎢ ⎥⎣ ⎦
1τ τ

ξ
βτ δ  

{ < }E exp( ) ( )x V x ∞⎡ ⎤≥ − +⎣ ⎦1τ τβτ δ  
  
and  

{ = }
,

E exp( ) ( )liminf x n nn
V xτ τ

ξ
βτ δ ∞

↑∞ ↑∞

⎡ ⎤− +⎢ ⎥⎣ ⎦
1  

{ = }
,

( / ) E exp( ) = 0.limx n
n

V r τ
ξ

ε δ βτ ∞
↑∞ ↑∞

⎡ ⎤
≥ − + −⎢ ⎥

⎢ ⎥⎣ ⎦
1  

 
Therefore, we get  
 

0
( ) E exp( ) ( )x tV x t U c dt

τ
δ β⎡ ⎤+ ≥ −⎢ ⎥⎣ ⎦∫  

{ < }E exp( ) ( )x V xτ τβτ δ ∞⎡ ⎤+ − +⎣ ⎦1  

{ < }0
E exp( ) ( ) E exp( ) ( )x t xt U c dt V x ∞

⎡ ⎤ ⎡ ⎤≥ − + −⎣ ⎦⎢ ⎥⎣ ⎦∫ 1
τ

τ τβ βτ

2 { < }0
E exp( ) ( ) E exp( ) ( )x t xt U c dt V x ∞

⎡ ⎤ ⎡ ⎤≥ − + −⎣ ⎦⎢ ⎥⎣ ⎦∫ 1
τ

τ τβ βτ

( , , )= ( ),V xcτ π  
 
where the third inequality comes from (8) and the fact 
that 2( ) ( )V x V x≥  for 

*0 <x z≤  and 2( ) = ( )V x V x  for x ≥  
*.z  Letting 0↓δ  we get ( , , )( ) ( ).V x V xτ π≥ c  Since ( , , )τ πc  

( )A x∈  is arbitrary, we get 
*( ) ( ).V x V x≥  Since 

* * *( , , )τ πc  
( )A x∈  and (53) holds, we have 

*( ) = ( )V x V x . □  
 
Remark 3.2: If the utility function is given in the CRRA 
class, then the condition (54) holds automatically without 
further assumption and the condition (55) is equivalent 
to a restriction on parameter values (See Section 5).  
 
We now consider the case where (0)'U  is finite so that 

(0)U  is also finite. Recall that : (0, (0)] [0, )'I U → ∞  de-
notes the inverse of 'U . We extend I by setting 0I ≡  on 
[ (0), ).'U ∞  If V is 

2 ,C  strictly increasing, and strictly 
concave, then the Bellman equation (15) for <t τ  be-
comes, for /x r> −ε , 
 

2

1
( ( ))( ) = [ ( ( )) ] ( )

( )

'
' '

''
V xV x rx I V x V x
V x

β κ ε− + − +   (56) 

( ( ( ))).'U I V x+  
For 0y > , let  
 

0
( )X ( ) := I yy
r

 (57) 

( )

0 ( )
1

1 ,
( ) ( ( )) ( ( ))

I y

I y' '

y d y d
rU U

+ − ∞

+ −+ − + −

⎡ ⎤
⎢ ⎥− + −

− ⎢ ⎥⎣ ⎦
∫ ∫

λ λ

λ λ
θ θ ε

κ λ λ λ λθ θ
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 and let  
 

0
( ( ))J ( ) := U I yy
β

 (58) 

( )

0 ( )
1

1 .
( ) ( ( )) ( ( ))

I y

I y' '

y d y d

U U

+ − ∞

+ −+ − + −

⎡ ⎤
⎢ ⎥− +

− ⎢ ⎥⎣ ⎦
∫ ∫

ρ ρ

λ λ
θ θ

κ ρ ρ ρ ρθ θ
  

 
Define a function : (0, )F R∞ →  by  
 

2 0 2 0 2 2( ) = ( ){X ( ( )) } {J ( ( )) ( )}.' ' 'F z V z V z z V z V z− −− − −λ ρ  
 
Suppose that there exists a * > 0z  such that  
 

*( ) = 0F z     (59) 
 
and  
 

* *
0 2X ( ( )) > 0.'z V z−    (60) 

 
Let  
 

{ }* * *
2 0 2

ˆ ( ( )) X ( ( )) .' 'B V z z V z
− −≡ −
λ   (61) 

 
Then, by (60) we have ˆ > 0.B  With this ˆ > 0,B  we define 
a function  
 

0
ˆ ˆX( ; ) = X ( ),y B B y y− +

λ   (62) 
 
for > 0,y  then we have  
 

* *
2

ˆX ( ( ); ) ='V z B z    (63) 
 
For 0,c ≥  we have = ( ( )),'c I U c  hence  
 

ˆ ˆX( ( ); ) = ( ; ).'U c B X c B  
 
For > 0y  and (0),'y U≠  using the relation 1= / ,rλ λ κ+ − −  
we get  
 

1ˆX ( ) =' y B y
−−

−
λ

λ  

( )

0 ( )
1

1 < 0.
( ) ( ( )) ( ( ))

I y

I y' '

d dy y
U U

∞
+ −

+ −+ −

⎡ ⎤
⎢ ⎥− +

− ⎢ ⎥⎣ ⎦
∫ ∫

λ λ
λ λ

θ θ
κ λ λ θ θ

 

 
Hence ˆX( ; )⋅ B  is strictly decreasing. Furthermore,  
 

0
ˆ ˆ ˆX( ; ) = X( ( ); ) = ( ; ) =lim lim lim'

y c c
y B U c B X c B

↓ ↑∞ ↑∞
∞  

and  
 

01

1ˆ ˆ( ; ) =lim lim ( ) ( ( ))'y y

y dy B By
rU

λ
λ

λ
θ ε

κ λ λ λ θ

− ∞−
↑∞ ↑∞ −+ − −

⎡ ⎤
⎢ ⎥− −
⎢ ⎥−
⎣ ⎦

∫X

= / .r−ε  

Therefore ˆX( ; )B⋅  maps (0, )∞  onto ( / , )rε− ∞  and has 
the inverse function ˆY( ; ) : ( / , ) (0, ).ε⋅ − ∞ → ∞B r  For ˆ 0,A ≥  

we define  
 

0
ˆ ˆJ( ; ) = J ( ) > 0.

ρ− +y A Ay y for y  (64) 
 
 Now, define a function V : ( / , )r R− ∞ →ε  by  
 

*ˆ ˆV( ) = J(Y( ; ); / ) / < < ,x x B B for r x z− − −λ ρ ε  (65) 
 
and  
 

*
2V( ) = ( ) .x V x for x z≥   (66) 

 
Then, we have  
 

ˆV( ) = J( ; / )lim lim
yx

r

x y B− −
↑∞↓−

ε
λ ρ  

01

(0) 1ˆ= lim
( ) ( ( ))'y

U y dBy
U

ρ
ρ

λ
λ θ
ρ β κ ρ ρ ρ θ

− ∞− −
↑∞ −− + − −

⎡ ⎤
⎢ ⎥+ −
⎢ ⎥−
⎣ ⎦

∫  

= (0) / .U β  
 
By (63), we have  
 

* *
2

*
ˆ ˆY( ; ) = Y( ; ) = ( ),lim

↑

'

x z
x B z B V z  

 
so that  
 

*
2

*
ˆV( ) = J ( ( ); / ).lim '

x z
x V z B− −

↑
λ ρ  

 
By (59), (61), we have  
 

*
2

*
V( ) = ( ).lim

x z
x V z

↑

 

 
We have the following lemma which is similar to Lem-
ma 3.2.  
 
Lemma 3.3: Suppose that (0) < .'U ∞  If there exists a 

* > 0z  satisfying (59) and (60), then V( )x  defined by 
(65) and (66)is strictly increasing, strictly concave for 

> /x r−ε , and satisfies the Bellman equation (15) for 
*/ < < .r x zε−   

 
We get the following theorem which can be proved us-
ing an argument similar to that for the case where (0)'U  
= .∞   
 
Theorem 3.2: Suppose that (0)'U  is finite. Assume that 
there exists a 

* > 0z  satisfying (59) and (60) and that 
2 ( ) ( )V x V x≤  for 

*0 < .x z≤  If  
 

2 2 2
0,

( ) {( ) ( ) ( ) ( )max ' '
m

c
V x r V x rx c V xΤ

≥
≥ − + − +1

π
β α π ε  
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*
2

1 ( ) ( )} ,
2

''V x U c for x zΤ+ Σ + ≥π π  

 
then the optimal value function is V( )x  defined by (65) 
and (66), and an optimal strategy is given by the fol-
lowing strategy ( * * *, ,cτ π ): 
 

** = ,zTτ  
* * 1 *V ( )= (V ( ), = ( ) ,  0 < .

V ( )

'
' t

t t t m''
t

xc I x r t
x

π α τ−− − Σ ≤1   

4.  PROPERTIES OF THE SOLUTION 

Now we investigate the properties of optimal poli-
cies. If the agent does not have the option to retire from 
labor, that is, if we restrict τ  to be infinite, then the 
optimal value 0 ( )V x  at x  and an optimal strategy are 
obtained similarly to Karatzas et al. (1986) as follows: 
When 0 0(0) = , ( ) = ( ( ; 0))'U V x J C x∞  for > /x r−ε  and an 

optimal strategy is given by 0

0

( )= ( ; 0), =
( )

'
t

t t t ''
t

V xc C x
V x

π −   

1( )mrα −− Σ1  for 0.t ≥  When 0 0(0) < , ( ) = J (Y( ; 0))∞'U V x x   
for > /x r−ε  and an optimal strategy is given by =tc  

10
0

0

( )( ( )), = ( )
( )

'
' t

t t m''
t

V xI V x r
V x

π α −− − Σ1  for 0.t ≥  

 
The following two propositions illustrate effects of 

the change of the investment opportunity set resulting 
from retiring from labor on optimal consumption and 
portfolio decisions. 

The agent consumes less if he expects a better in-
vestment opportunity after retiring from labor than he 
would if he did not have such an option. Intuitively, he 
tries to accumulate wealth fast enough to exploit a better 
investment opportunity and sacrifices the current con-
sumption. Proposition 4.1 states this property. 

 
Proposion 4.1: In Theorem 3.1 which considers the case 
where (0) = ,'U ∞  it holds that  

 
*ˆ( ; ) < ( ; 0) / < < .C x B C x for r x z− ε   (67) 

 
In Theorem 3.2 which treats the case where (0) < ,'U ∞  it 
holds that if 

*
0X ( (0)) <'U z  then  

 
0 0(V ( )) = ( ( )) = 0 X ( (0))' ' 'I x I V x for x U≤  

 
and 

*
0 0(V ( )) < ( ( )) X ( (0)) < < .' ' 'I x I V x for U x z  

 
Proof: Consider the case where (0) = :∞'U  Since B̂  is 
larger than zero, 0

ˆ( ; ) > ( )X c B X c  for all > 0.c  Hence their 
inverse functions have the relation ˆ( ; ) < ( ; 0)C x B C x  for 
all > /x r−ε  since ˆ( ; )X B⋅  and 0 ( )X ⋅  are increasing 
functions. 

Consider the case where (0) < :∞'U  Since B̂  is lar-
ger than zero, 0

ˆX( ; ) > X ( )y B y  for all > 0y . Hence their 
inverse functions have the relation v for all >x / rε−  

since ˆX( ; )B⋅  and 0X ( )⋅  are decreasing functions. It 
can be easily checked that ˆV ( ) = Y( ; )' x x B  and, as in 
Karatzas et al. (1986), it can be shown that 0 ( ) = ( ; 0).'V x Y x  
If 0X ( (0)),'x U≤  then ˆY( ; ) > Y( ; 0) (0).'x B x U≥  Therefore 

0(V ( )) = ( ( )) = 0' 'I x I V x  for 0X ( (0))'x U≤  since 0I ≡  on 
[ (0), ).'U ∞  If 0

ˆX ( (0)) < X ( (0); ),' 'U x U B≤  then ( ; 0) <Y x  
(0)'U  and ˆY( ; ) (0).'x B U≥  Hence 0( ( )) > 0'I V x  and (V'I  

( )) = 0x  for 0
ˆX ( (0)) < X ( (0); )' 'U x U B≤  since ( ) > 0I y  for 

0 < < (0)'y U  and 0I ≡  on [ (0), ).'U ∞  If ˆ> X ( (0); ),'x U B  
then ˆ0 < Y( ; 0) < Y( ; ) < (0).'x x B U  Hence 0(V ( )) < (' 'I x I V  
( ))x  for ˆ> X( (0); )'x U B  since ( )I ⋅  is strictly decreasing 
for 0 < < (0)'y U .  □ 

 
The agent tends to take more risk and thereby tries 

to increase expected growth rate of his wealth when he 
expects a better investment opportunity after retiring 
from labor. This is summarized in Proposition 4.2. 

 
Proposion 4.2: In Theorem 3.1 which considers the case 
where (0) = ,'U ∞  it holds that  

*0

0

( )( ) >  / < < ,
( ) ( )

''

'' ''
V xV x for r x z

V x V x
−

− −
ε  (68) 

and in Theorem 3.2 which treats the case where (0) <'U  
,∞  it holds that  

*0

0

( )V ( ) >  / < < .
V ( ) ( )

''

'' ''
V xx for r x z

x V x
ε−

− −
V   (69) 

Proof: We prove only (68), that is, we consider only the 
case where (0) ='U ∞  since (74) is proved similarly. 

 
As in Karatzas et al. (1986), it is easily shown that 

0 ( ) = ( ( ; 0))' 'V x U C x  for > / .ε−x r  Note that ( ) = (' 'V x U C  
ˆ( ) = ( ( ; )' 'V x U C x B  for */ < <ε− r x z . We can calculate 

that  

ˆ( ) ( ; )=
( )

'

''
V x C x Bx

rV x −

⎧⎪− −⎨
− ⎪⎩

λ  

ˆ( ; )

0

1 ˆ( ( ( ; )))
( ( ))

λ
λ

θ λ ε

θ
−+

+

⎫⎪+ −⎬
⎪⎭

∫
C x B'

'

dU C x B
r rU

 

 
and that  

 
0

0

( ) ( ; 0)= {
( )

'

''
V x C xx

rV x −− −
−

λ  

( ;0)

0

1 ( ( ( ; 0))) } .
( ( ))

C x'
'

dU C x
r rU

−+

+
+ −∫

λ
λ

θ λ ε

θ
 

 
By differentiation it is easily checked that  
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0

1 ( ( ))
( ( ))

c'
'

c dx U c
r r U

+
−

+

⎧ ⎫⎪ ⎪− − +⎨ ⎬
⎪ ⎪⎩ ⎭

∫
λ

λ
θλ
θ

 

 
is a decreasing function of c. Since ˆ( ; ) < ( ; 0),C x B C x  we 

have 0

0

( )( ) >
( ) ( )

''

'' ''
V xV x

V x V x− −
 for 

*/ < < .r x zε−  □ 

5.  THE SOLUTION UNDER THE CRRA 
UTILITY CLASS 

In this section we consider the case where the uti-
lity function is in the CRRA class with CRRA coeffi-
cient .γ  That is, the utility function is given by  

 
1

( ) =   > 0 0 < 1.
1
cU c for c if

−

≠
−

γ
γ

γ
  (70) 

 
(The log utility, ( ) = log   > 0,U c c for c  corresponds to the 
case where = 1,γ  which we will not consider here since 
similar results holds in this case). 

If the utility function is given by (70), then we can 
easily check that Assumption 2.2 can be rewritten (as 
mentioned in Karatzas et al. (1986), Koo et al. (2003), 
and Choi and Shim (2006)) as 

  
1 2> 0  P( > 0) = 1,K and K   (71) 

 
where 

2
1 1:= ( ) / ( 1) /K r r+ − + −β γ γ κ γ  and  

2
2 2:= ( ) / ( 1) /K r r+ − + −β γ γ κ γ .  

 
Remark 5.1: As mentioned in Koo et al. (2003) and Choi 
and Shim (2006), 1 > 0 1 < 0.K −⇔ + γ λ  

 
Assumption 3.1 is equivalent to (see the arguments 

below)  
 

2 1P( > ) > 0,κ κ    (72) 
 

which implies that the agent expects a better investment 
opportunity after retirement (see Remark 2.1 in Shim 
(2011)): As in Karatzas et al. (1986) and Merton (1969),  

 
12

2 ( ) =  0.
(1 )
KV z z for z

−
− ≥

−

γ
γ

γ
 

 
so that  

 
1

2 2 2( ) = E ( ) = E  0.
(1 )

γ
γ

γ

−
−⎡ ⎤⎡ ⎤ ≥⎣ ⎦ ⎣ ⎦ −x x

zV z V z K for z  

 
By using (71) and (72), we can easily that there exists 

2κ  such that 
2

2 1 2 2> , := ( ) / ( 1) / > 0,K r rκ κ β γ γ κ γ+ − + −   
and 2 2E [ ] = .x K Kγ γ− −

 That is 2κ  is the certainty equiva-
lent of 2κ  in the sense that  

12
2 ( ) = .

(1 )
KV z z

−
−

−

γ
γ

γ
 

 
By calculation, we have  

 
1

0 0
1 1

1( ) =     ( ) = ,    > 0.
(1 )

cX c and J c c for c
K r K

−−
−

γε
γ

 

 
Hence the function : (0, )G R∞ →  defined by (21), in this 
case, becomes  

 
2 1

22
1

(1 ) ( )( ) = .
(1 )

K KG z z K z K
K r

−− −− −⎧ ⎫+ −⎪ ⎪− +⎨ ⎬
−⎪ ⎪⎩ ⎭

γγ γγλ λ ε
γ

 

 
Let  

 
2 1

2 2
1

(1 )( )( ) = , > 0.
(1 )

K Kg z K z K z
K r

− −− −+ −
+

−
γ γγ λ λ ε

γ
 

 
Then 0 2(0) := ( ) = < 0lim zg g z K

r
−−

→
γλ ε

 and ( ) =lim z g z→∞  

.∞  Furthermore g is a strictly increasing function. The 
* > 0z  such that 

*( ) = 0g z (equivalently 
*( ) = 0G z ) be-

comes  
 

* 1

2 1

(1 )= > 0.
(1 )( )

Kz
r K K

−

−

− −
+ −
λ ε γ
γλ

   (73) 

 
The constant *B̂  in (29) becomes  

 
* * * *

2 1 2
1

1ˆ = ( ) [ ( ) ].B K z K z K z
K r

− + −
γλ ε     (74) 

 
Remark 5.2: 

*B̂  is positive, that is, we have 
*

2 1<K z K  
*( / )z rε+   

 
Proof: When 0 < < 1γ  it is clear. When > 1,γ  it is easily 

checked that if 1

2 1
0 < < Kz

K K r−
ε , then 2 1< ( )K z K z

r
+
ε  

and if 1

2 1
> Kz

K K r−
ε , then 2 1> .K z K z

r
ε⎛ ⎞+⎜ ⎟

⎝ ⎠
 However 

1
2

2 1

1= > 0.
1

Kg K
K K r r

γε λ ε
γ

−−⎛ ⎞ +
⎜ ⎟⎜ ⎟− −⎝ ⎠

 Hence * 1

2 1
0 < < Kz

K K−
 

r
ε

 so that * *
2 1< .K z K z

r
ε⎛ ⎞+⎜ ⎟

⎝ ⎠
 □  

 
The function 

*ˆ( ; ) : (0, ) ( / , )X B r⋅ ∞ → − ∞ε  becomes  
 

* *

1

ˆ ˆ( ; ) = .cX c B B c
K r

− − + −
γλ ε     (75) 

 
For ˆ 0,A ≥  the function ˆ( ; )J A⋅  in (26) becomes  

1

1

1ˆ ˆ( ; ) = ,
(1 )

J c A Ac c
K

− −− +
−

γρ γ

γ
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and the function : ( / , )V r R− ∞ →ε  defined in (27) and 
(28) becomes  

* * *ˆ ˆ( ) = ( ( ; ); ) < < ,V x J C x B B for x z
r

−

−
−

λ ε
ρ

    (76) 

and  
 

1 *2( ) =  .
1
KV x x for x z

−
− ≥

−

γ
γ

γ
       (77) 

 
Lemma 5.1: The condition (54) is automatically sa-
tisfied if the utility function is given by (70).  
 
Proof: Since 

* *
2 ( ) = ( ),V z V z  the condition (54) is sati-

sfied if 2 ( ) ( )' 'V x V x≥  for 
*0 ,x z≤ ≤  which is equivalent 

to 
*

2
ˆ( ( )) ( ( )) = ( ; )' 'I V x I V x C x B≤  for 

*0 x z≤ ≤  where the 
equality comes from (39). Hence it suffices to show that  
 

*
2

ˆ( ( ( ); )'X I V x B x≤  for 
*0 .x z≤ ≤  Let, for 

*0 ,x z≤ ≤   
2

ˆ( ) = ( ( ( ); )'x X I V x B x−φ  

* 2
2

1

( ( ))ˆ= ( ( ( ))
'

' I V xB I V x x
K r

− − + − −
γλ ε  

* * *
2 1 2 2

1

2

1

1= ( ) [ ( ) ]( )K z K z K z K x
K r

K x x
K r

−− −+ −

+ − −

γλ γλε

ε
 

* * * 2
1 2

1 1

1= ( ) [ ( ) ]( ) .K xz K z K z x x
K r K r

−− −+ − + − −
γλ γλε ε  

 
Then we have  
 

*( ) = 0, (0) = / < 0,z r−φ φ ε         (78) 

 
and 
 

1* * *
1 2

1

1( ) = ( ) [ ( ) ]' x z K z K z x
K r

γλ γλεφ γλ
− −− −

−− + −   

2

1
1.K

K
+ −  

 
By Remarks 5.1 and 5.2, ( )'φ ⋅  is an increasing function 
so that ( )φ ⋅  is convex. Therefore, by (78) we have 

( ) 0x ≤φ  for 
*0 .x z≤ ≤  □ 

 
Lemma 5.2: A necessary and sufficient condition for (55) 
is 1 11 / / 0.r K r Kλ γ−− − ≥   
 
Proof: By calculation we have 
 

2 2
0,

( ) {( ) ( )max '
m

c
V x r V x

π
β α π Τ

≥
− − 1  

2 2
1( ) ( ) ( ) ( )}
2

' ''rx c V x V x U cε π π Τ+ − + + Σ +  

1 *2 1
2 2=  .K x K x for x z− − − −−

− + ≥γ γ γ γκ κ ε
γ

 

 
Therefore the condition (55) is equivalent to 2 1 xκ κ

γ
−

− +  

0ε ≤  for 
*,x z≥  which is again equivalent to *2 1 zκ κ

γ
−

−  

0ε+ ≤  since 2 1> .κ κ  By the fact that 
*( ) = 0,g z  this ine-

quality is equivalent to 11 / / 0.r K r Kλ γ−− − ≥  □ 
 
Figure 1 compares the consumption rates before 

retirement for the two cases: (1) τ  is enforced to be 
infinite and (2) the agent has an option to retire. As 
explained in Proposition 4.1, the figure shows that the 
wage earner consumes less before touching the critical 
wealth level in the latter case than in the former case. 

 

 
Figure 1. Comparison of consumption rates with a CRRA 

utility function 
  
Figure 2 compares amount of wealth invested in the 

risky assets in the two cases. As explained in Proposi-
tion 4.2, the figure shows that, before retirement, the 
agent invests more in the risky assets in the latter case 
than in the former case. 

 

 
Figure 2. Comparison of amount of wealth invested in the 

risky asset with a CRRA utility function 
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6.  CONCLUSION 

We have studied an optimal retirement, consump-
tion and portfolio selection problem of a wage earner. 
We have obtained a closed form solution to the optimi-
zation problem by using a dynamic programming me-
thod under general time-separable von Neumann-Mor-
genstern utility. We have shown that the wage earner 
retires from his work and becomes a full-time investor 
as soon as his wealth exceeds a critical wealth level that 
is obtained from a free boundary value problem. We have 
also shown that the agent consumes less and takes more 
risk if the agent expects a better investment oppor-tunity 
after retiring from labor than he would if he did not have 
such an option 
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