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ABSTRACT 

A flow shop scheduling problem involves scheduling jobs on multiple machines in series in order to optimize a given 
criterion. The flow time of a job is the amount of time the job spent before its completion and the stretch of the job is 
the ratio of its flow time to its processing time. In this paper, a hybrid genetic algorithm (HGA) approach is proposed 
for minimizing the total stretch in flow shop scheduling. HGA adopts the idea of seed selection and development in 
order to reduce the chance of premature convergence that may cause the loss of search power. The performance of 
HGA is compared with that of genetic algorithms (GAs). 
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1.  INTRODUCTION 

In many scheduling problems, the focus of perfor-
mance measure has been on the flow time, which is de-
fined as the amount of time that a given job spends in the 
system (Baker and Trietsch, 2009). Recently, alternative 
performance measures have been considered and among 
them, the stretch measure has received a lot of attention 
(Chan et al., 2006). The stretch of a job formally is de-
fined as the ratio of its flow time to its required process-
ing time (Bender et al., 2004). The stretch measure relates 
the jobs’ waiting times to their processing times, and may 
reflect users’ psychological expectation that, in a system 
with highly various job sizes, users are willing to wait 
longer for larger jobs (Muthukrishnan et al., 2005). The 
idea of stretch is illustrated by the two-job, two-machine 
flow shop shown in Figure 1. The processing times of 
jobs 1 and 2 are 3 and 1 time units on machine 1, and 2 
and 9 time units on machine 2, respectively. The release 
times of jobs 1 and 2 are 5 and 2 time units. If job 1 is 
processed before job 2, the total flow time and the total 
stretch will be 22 (= 5+17) and 2.7 (= 5/5+17/10) time 
units, respectively (schedule 1). As Figure 1(b) shows, 
when job 2 is processed first, the total flow time is re-

duced to 19 (= 10+9) time units, but the total stretch is 
increased to 2.8 (= 10/10+9/5) time units (schedule 2). 

This paper presents a solution methodology for an 
n-job, m-machine flow shop scheduling problem in which 
the objective is to minimize the total stretch. Since the 
problem of minimizing the total stretch with different 
job release times is not tractable even for a single ma-
chine (Pinedo 2012), it is usually very difficult to find a 
global optimum by general local search algorithms such 
as the pairwise interchange methods. Recently, meta-he-
uristic methods such as genetic algorithms, simulated 
annealing, and tabu search, have been proposed to es-
cape from local optima and search for global or near-
optimal solutions and have been successful in solving 
combinatorial optimization problems (Dreo et al., 2005). 

In spite of their desirable properties of GAs, basic 
GAs can still fail for a variety of reasons including con-
vergence to local optima (premature convergence). The 
problem of premature convergence is related with the 
loss of genetic diversity of the individuals (solutions), 
which can be the cause of poor quality of the individuals 
(Liepins and Hilliard, 1989). In this paper, a hybrid ge-
netic algorithm (HGA) is proposed to lessen the prob-
lem of premature convergence through the aid of more 
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M 1     1 2          
                 
M 2       1 2  
                 

time   5      8   9 10         19  
                 

(a) Schedule with Smaller Total Stretch (Schedule 1) 
                 
                 
M 1   2 1           
                
M 2    2 1      
                

time 2   3   6   12 14    
                 

(b) Schedule with Smaller Total Flow Time (Schedule 2) 

Figure 1. Two Schedules for a Two-Machine Flow Shop (Numerical Entries Represent Jobs) 

rational genetic operators. In section 2, the minimization 
problem of the total stretch in the n-job, m-machine flow 
shop scheduling is defined. The development of HGA 
and its application to the flow shop scheduling problem 
are presented in section 3. In section 4, the results of 
extensive computational experiments comparing HGA 
and GAs are provided. Finally, a summary of main re-
sults and conclusions are provided in Section 5. 

2.  MINIMIZATION OF THE TOTAL 
STRETCH IN THE n-JOB, m-MACHINE 
FLOW SHOP 

There is a set of jobs J = {1, 2, …, n} that has to 
be processed in the system consisting of m machines in 
series. Each machine processes jobs in the same order. 
For job j, j = 1, ···, n, let rj be the release time, pij the 
processing time on machine i, i = 1, …, m. Let pj be the 
sum of processing times of job j (= p1j + p2j + ··· + pmj). 
If the completion time of job j on machine i is cij, then 
the stretch sj = (cmj – rj)/pj. 

For a given sequence σ, the problem can be formu-
lated as follows: 
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Constraint set (1) states that each machine can process at 
most one job at the same time. Constraint set (2) estab-

lishes the relationships between completion times of any 
two jobs on each machine. That is, only one job at most 
can be processed on each machine at the same time. 
Constraint set (3) states that jobs are available after their 
release times. 

3.  HYBRID GA APPROACH 

GAs are stochastic search methods designed to 
search large and complex spaces by exploitation of cur-
rently known solutions and a robust exploration of the 
space (Lee et al., 1997). GAs start with a collection (or 
population) of randomly selected solutions (or individu-
als). With the survival of the fittest philosophy, GAs 
select individuals in a population to form a gene pool 
according to their fitness values. Two individuals in the 
gene pool are randomly mated and go through the cross-
over and mutation process to produce two new solutions 
(or offsprings), and the solutions steadily improve from 
iteration (or generation) to iteration. The population size 
(the number of individuals in a population) remains 
fixed in all generations (Bhattacharyya, 1999). 

The proposed HGA adopts three basic operators of 
GAs (selection, crossover, mutation) and combines the 
idea of seed selection and development, which prevents 
the premature convergence of many GAs and also main-
tains the search power of GAs. The detail procedure of 
HGA is explained below in comparison with GAs. 

 
Utilization of Seed Selection to Generate Initial 
Population 

Most scheduling problems use a permutation repre-
sentation for individuals where a sequence of n jobs is 
defined by a permutation of integers {1, …, n}. In the 
literature, GAs begin with randomly generated popula-
tions (Liepins and Hilliard, 1989). HGA generates most 
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of individuals in an initial population randomly in order 
to search unbiased sampling of the space, which provides 
robust exploitation of the current solutions. To start with 
some good quality of solutions, HGA fills the rest of the 
initial population with individuals generated by various 
types of local search methods based on two steps: (1) 
rules to generate the initial sequences such as the short-
est release time (SRT), the shortest processing time on 
the first machine (SPTF), and the shortest total process-
ing times (SPTT), (2) neighborhood search mechanisms 
such as the non-adjacent pairwise interchange (NAPI), 
the extraction and forward shifted reinsertion (EFSR), 
and the extraction and backward shifted reinsertion (EBSR). 
Generating too many individuals by seed selection may 
prevent the robust search of HGA. 

 
Calculation of Individual’s Fitness  

An individual with high objective value should have 
a low fitness value, and vice versa. HGA transforms an 
objective value of individual l into its fitness value (fscale) 
by the following equation: 

 
max min( )( ) ,   for 1, ,− +

= =l
scale l

avg

z z zf l w
z
σσ , 

 
where zmax, zmin and zavg are the maximum, minimum and 
average objective values in the current population, re-
spectively, and z(σl) is the objective value of individual l. 
When the difference between normalized objective val-
ues of individuals in a population is relatively small, the 
selection process may become a random walk. In this 
case, the fitness value of individual l (frank) by rank can 
be calculated below: 
 

2([ ]) ,   for 1, ,
( 1)

= =
+rank l
lf l w
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where [σl] is the lth individual in a descending order of 
objective function values. 

 
Selection 

HGA adopts the stochastic remainder selection pro-
cedure without replacement to determine the expected 
number of copies of individual l, E(l) , l = 1, …, w, in 
the mating pool. E(l) can be calculated as follows: 

1
( ) ( ) / ( ),   for 1, ,

=

= =∑
w

l j
j

E l wf f l wσ σ , 

where ( )lf σ  is the fitness value of individual l. If E(l) 
is non-integer, for some l, then only ⎣E(l)⎦ copies of 
individual l are assigned to the mating pool, and addi-
tional individuals need to be selected from the current 
population. Bernoulli trials (weighted coin tosses) with 
success probabilities Ps(l) = E(l) – ⎣E(l)⎦ are performed 
to individual l one by one until the mating pool is full. 
When individual l is selected, Ps(l) is reduced to 0. 

Recombination Operators (Crossover and Mutation) 
HGA adopts PMX with a constant crossover prob-

ability (rate). Under PMX, two crossover points are pic-
ked at random. The genes in an individual that are posi-
tioned in the section bounded by the two crossover po-
ints are matched (connected) to genes in the correspond-
ing positions of the other individual. If two pairs of con-
nected genes share the same value (or allele), the com-
mon gene is eliminated and the two remaining genes are 
combined into a single connection. After all the reduc-
tions of this type are completed, the remaining pairs of 
connected genes form the match table. Finally, the genes 
in the first and last sections are exchanged if they are 
included in the match table. For example, suppose that A 
and B are the individuals chosen for crossover such that 
A = (7 3 2 6 4 5 1) and B = (4 3 7 2 5 1 6), and the two 
crossover points are 2 and 5. First, the genes between 
two crossover points are swapped (2, 6, 4 of A and 7, 2, 
5 of B). Second, the genes before the first crossover po-
int and after the second crossover points are exchanged 
according to the match table (7 ↔ 6, 5 ↔ 4) Then, the 
resulting individuals by PMX are A’ = (6 3 7 2 5 4 1) 
and B’ = (5 3 2 6 4 1 7). 

HGA adopts the adjacent swap method with a con-
stant mutation rate in which a job is exchanged with the 
next job in the job sequence. If the last job is to be mu-
tated, it is exchanged with the first job in the job se-
quence. 

 
Development 

The premature convergence of many GAs can be 
overcome by using the stochastic remainder selection 
procedure without replacement (Goldberg, 1989), since 
the maximum number of copies of individual l, l = 1, 
…, w, in the mating pool is bounded and thus, high fit 
individuals cannot prevail in the early generations. How-
ever, using this selection scheme may increase the prob-
ability of selecting the least fit individuals in compari-
son with other selection schemes such as the roulette 
wheel selection method. The selection of the least fit in-
dividuals may provide low fit offsprings and, in turn, 
severely decrease the search power for the best solutions. 
HGA applies a non-adjacent pairwise interchange (NAPI) 
method to the least fit individual in the mating pool, and 
replaces the least fit individual by the best individual in 
its neighborhood. The combination of the stochastic re-
mainder selection procedure without replacement and 
NAPI prevents high fit individuals from dominating the 
population in the early generations and also maintains 
the GA search power to reach for the best solutions. 

 
Hybrid Genetic Algorithm (HGA) 
Step 0 (Initialization) 
In a preliminary test, the best set of following parame-
ters is determined before the main test: Method of fitness 
value calculation, population size, number of generation, 
crossover probability, mutation probability, number of 
individuals generated by seed selection 
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Table 2. Results for Medium and Large Size Problems 

HGA GA % Dev 
(zg-zh/zg)x100No. of 

Jobs 
No. of 

Machines 
Avg. obj. value (zh) Max obj. value Avg. obj. value (zg) Max obj. value  

10 

2 
3 
4 
5 

26.45 
22.15 
19.93 
18.49 

30.34 
24.49 
21.87 
19.78 

27.04 
23.49 
20.59 
19.10 

31.00 
25.61 
22.79 
20.47 

2.19 
5.71 
3.19 
3.20 

15 

2 
3 
4 
5 

51.87 
42.75 
37.17 
34.25 

58.59 
46.30 
39.63 
36.01 

56.52 
45.34 
40.03 
36.37 

61.88 
48.08 
43.23 
38.09 

8.22 
5.71 
7.15 
5.83 

20 

2 
3 
4 
5 

85.26 
72.48 
61.49 
56.04 

89.98 
77.14 
65.32 
60.06 

100.92 
80.59 
68.79 
61.45 

110.82 
88.00 
73.19 
64.32 

15.52 
10.06 
10.60 
8.80 

30 

2 
3 
4 
5 

182.20 
146.94 
125.82 
112.20 

194.87 
163.85 
137.30 
120.81 

226.21 
170.22 
146.67 
123.68 

252.73 
178.63 
154.85 
133.13 

19.46 
13.68 
14.22 
9.29 

Average  68.52 74.47 77.94 84.18 8.93 

Step 1 (Construction of an initial population) 
(a) Generate predetermined number of individuals using 

a random number generator. 
(b) Generate the rest of individuals by seed selection 
 
Step 2 (Evaluation and selection) 
(a) Obtain objective values of individuals in the popula-

tion 
(b) Compute the fitness values of individuals in the po-

pulation. 
(c) Use the stochastic remainder sampling without re-

placement to select individuals from the population 
to form a mating pool. 

 
Step 3 (Development) 
Apply the NAPI method to find the best individual in 
the neighborhood of the least fit individual selected in 
Step 2(c). Replace the least fit individual in the mating 
pool by the best individual in the neighborhood. 
 
Step 4 (Reproduction) 
(a) Mate individuals in the mating pool randomly. 
(b) Apply PMX with a constant crossover rate to the 

couples. 
(c) Apply the adjacent swap method with a constant 

mutation rate to the offsprings produced by PMX. 
 
Step 5 (Termination test) 
If HGA reaches the maximum number of generations, 
stop. Otherwise, go to Step 2. 

4.  COMPUTATIONAL STUDY 

The HGA and GA were coded in Visual FORTRAN 

and ran on an Intel Core i7 CPU@3.4 GHz PC. Since no 
sample problems were found in the literature that could 
be used as a benchmark for testing the proposed HGA, 
the test problems were generated randomly. Processing 
times and release times of jobs were generated accord-
ing to the integer uniform distributions provided in Ta-
ble 1.  

 
Table 1. Data Used to Generate Test Problems (All Data 

are Integers) 

Data Value 
Number of jobs 5, 7, 10, 15, 20, 30 
Number of machines 2, 3, 4, 5 
Job processing times Uniform(1, 31) 
Job release times Uniform(1, 6) 

 
The experiments were divided into two parts: a pre-

liminary test and a main test. Since the performances of 
GA and HGA are influenced by several control parame-
ters, a preliminary test is necessary to achieve the best 
parameter set for GA and HGA. In the preliminary test, 
5 test problems of different sizes generated according to 
the data in Table 1 were solved. The best average objec-
tive function value was obtained by using the fitness 
function by rank, a total of 10 seed individuals, a popu-
lation size of 100, a total of 100 generations, a crossover 
rate of 1.0, and a mutation rate of 0.01. 

The test problems for the main test were generated 
in a similar way. Nine different test problems were gen-
erated for each problem size. These 216 problems were 
solved by HGA. For small size flow shop problems (5 
and 7 jobs and 2-5 machines), the results of HGA were 
compared with the optimal solutions obtained by ex-
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haustive search. HGA achieved optimal solutions for all 
small size problems. HGA was applied to medium size 
(10 and 15 jobs and 2-5 machines) and large size (20 
and 30 jobs and 2-5 machines) problems. To evaluate 
the performance of HGA, the solutions obtained by 
HGA were compared with the solutions provided by GA. 
The results of HGA and GA for medium and large size 
problems are shown in Table 2. The average objective 
function values reported in Table 2 are the average val-
ues of nine instances for each problem size. Based on 
these results, HGA provides an 8.93% improvement 
with respect to GA on the average. 

5.  CONCLUSIONS 

This paper addresses the problem of minimizing 
the total stretch in the n-job, m-machine flow shop. 
Since this problem is NP-hard even for a single machine, 
it requires significant computational effort to solve the 
problems with large n. Meta-heuristic algorithms such 
as GAs have been used for many scheduling problems. 
HGA is proposed to reduce the premature convergence 
of GAs and maintain the search power by adopting the 
new idea of seed selection and development. The per-
formance of the HGA was compared with that of GA 
and the results of the computational experiments show 
that the HGA works well for this type of problem. 
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