

Minimizing the Total Stretch
in Flow Shop Scheduling

Suk-Hun Yoon*
Department of Industrial and Information Systems Engineering, Soongsil University

(Received: November 5, 2014 / Revised: November 19, 2014 / Accepted: November 21, 2014)

ABSTRACT

A flow shop scheduling problem involves scheduling jobs on multiple machines in series in order to optimize a given
criterion. The flow time of a job is the amount of time the job spent before its completion and the stretch of the job is
the ratio of its flow time to its processing time. In this paper, a hybrid genetic algorithm (HGA) approach is proposed
for minimizing the total stretch in flow shop scheduling. HGA adopts the idea of seed selection and development in
order to reduce the chance of premature convergence that may cause the loss of search power. The performance of
HGA is compared with that of genetic algorithms (GAs).

Keywords: Scheduling, Flow Shop, Stretch, Genetic Algorithms

* Corresponding Author, E-mail: yoon@ssu.ac.kr

1. INTRODUCTION

In many scheduling problems, the focus of perfor-
mance measure has been on the flow time, which is de-
fined as the amount of time that a given job spends in the
system (Baker and Trietsch, 2009). Recently, alternative
performance measures have been considered and among
them, the stretch measure has received a lot of attention
(Chan et al., 2006). The stretch of a job formally is de-
fined as the ratio of its flow time to its required process-
ing time (Bender et al., 2004). The stretch measure relates
the jobs’ waiting times to their processing times, and may
reflect users’ psychological expectation that, in a system
with highly various job sizes, users are willing to wait
longer for larger jobs (Muthukrishnan et al., 2005). The
idea of stretch is illustrated by the two-job, two-machine
flow shop shown in Figure 1. The processing times of
jobs 1 and 2 are 3 and 1 time units on machine 1, and 2
and 9 time units on machine 2, respectively. The release
times of jobs 1 and 2 are 5 and 2 time units. If job 1 is
processed before job 2, the total flow time and the total
stretch will be 22 (= 5+17) and 2.7 (= 5/5+17/10) time
units, respectively (schedule 1). As Figure 1(b) shows,
when job 2 is processed first, the total flow time is re-

duced to 19 (= 10+9) time units, but the total stretch is
increased to 2.8 (= 10/10+9/5) time units (schedule 2).

This paper presents a solution methodology for an
n-job, m-machine flow shop scheduling problem in which
the objective is to minimize the total stretch. Since the
problem of minimizing the total stretch with different
job release times is not tractable even for a single ma-
chine (Pinedo 2012), it is usually very difficult to find a
global optimum by general local search algorithms such
as the pairwise interchange methods. Recently, meta-he-
uristic methods such as genetic algorithms, simulated
annealing, and tabu search, have been proposed to es-
cape from local optima and search for global or near-
optimal solutions and have been successful in solving
combinatorial optimization problems (Dreo et al., 2005).

In spite of their desirable properties of GAs, basic
GAs can still fail for a variety of reasons including con-
vergence to local optima (premature convergence). The
problem of premature convergence is related with the
loss of genetic diversity of the individuals (solutions),
which can be the cause of poor quality of the individuals
(Liepins and Hilliard, 1989). In this paper, a hybrid ge-
netic algorithm (HGA) is proposed to lessen the prob-
lem of premature convergence through the aid of more

Management Science and Financial Engineering
Vol 20, No 2, November 2014, pp.33-37 http://dx.doi.org/10.7737/MSFE.2014.20.2.033
ISSN 2287-2043│EISSN 2287-2361│ © 2014 KORMS

Yoon: Management Science and Financial Engineering
Vol 20, No 2, November 2014, pp.33-37, © 2014 KORMS 34

M 1 1 2

M 2 1 2

time 5 8 9 10 19

(a) Schedule with Smaller Total Stretch (Schedule 1)

M 1 2 1

M 2 2 1

time 2 3 6 12 14

(b) Schedule with Smaller Total Flow Time (Schedule 2)

Figure 1. Two Schedules for a Two-Machine Flow Shop (Numerical Entries Represent Jobs)

rational genetic operators. In section 2, the minimization
problem of the total stretch in the n-job, m-machine flow
shop scheduling is defined. The development of HGA
and its application to the flow shop scheduling problem
are presented in section 3. In section 4, the results of
extensive computational experiments comparing HGA
and GAs are provided. Finally, a summary of main re-
sults and conclusions are provided in Section 5.

2. MINIMIZATION OF THE TOTAL
STRETCH IN THE n-JOB, m-MACHINE
FLOW SHOP

There is a set of jobs J = {1, 2, …, n} that has to
be processed in the system consisting of m machines in
series. Each machine processes jobs in the same order.
For job j, j = 1, ···, n, let rj be the release time, pij the
processing time on machine i, i = 1, …, m. Let pj be the
sum of processing times of job j (= p1j + p2j + ··· + pmj).
If the completion time of job j on machine i is cij, then
the stretch sj = (cmj – rj)/pj.

For a given sequence σ, the problem can be formu-
lated as follows:

1

minimize ()
n

mj j

j j

c r
z

p
σ

=

−
= ∑

subject to
, () , () 1, () , for 2, , , 1, , −− ≥ = =i j i j i jc p c i m j nσ σ σ (1)

, () , () , (1) , for 1, , , 2, ,−− ≥ = =i j i j i jc p c i m j nσ σ σ (2)

, () , () () , for 1, , , 1, ,− ≥ = =i j i j jc p r i m j nσ σ σ (3)

Constraint set (1) states that each machine can process at
most one job at the same time. Constraint set (2) estab-

lishes the relationships between completion times of any
two jobs on each machine. That is, only one job at most
can be processed on each machine at the same time.
Constraint set (3) states that jobs are available after their
release times.

3. HYBRID GA APPROACH

GAs are stochastic search methods designed to
search large and complex spaces by exploitation of cur-
rently known solutions and a robust exploration of the
space (Lee et al., 1997). GAs start with a collection (or
population) of randomly selected solutions (or individu-
als). With the survival of the fittest philosophy, GAs
select individuals in a population to form a gene pool
according to their fitness values. Two individuals in the
gene pool are randomly mated and go through the cross-
over and mutation process to produce two new solutions
(or offsprings), and the solutions steadily improve from
iteration (or generation) to iteration. The population size
(the number of individuals in a population) remains
fixed in all generations (Bhattacharyya, 1999).

The proposed HGA adopts three basic operators of
GAs (selection, crossover, mutation) and combines the
idea of seed selection and development, which prevents
the premature convergence of many GAs and also main-
tains the search power of GAs. The detail procedure of
HGA is explained below in comparison with GAs.

Utilization of Seed Selection to Generate Initial
Population

Most scheduling problems use a permutation repre-
sentation for individuals where a sequence of n jobs is
defined by a permutation of integers {1, …, n}. In the
literature, GAs begin with randomly generated popula-
tions (Liepins and Hilliard, 1989). HGA generates most

Minimizing the Total Stretch in Flow Shop Scheduling
Vol 20, No 2, November 2014, pp.33-37, © 2014 KORMS 35

of individuals in an initial population randomly in order
to search unbiased sampling of the space, which provides
robust exploitation of the current solutions. To start with
some good quality of solutions, HGA fills the rest of the
initial population with individuals generated by various
types of local search methods based on two steps: (1)
rules to generate the initial sequences such as the short-
est release time (SRT), the shortest processing time on
the first machine (SPTF), and the shortest total process-
ing times (SPTT), (2) neighborhood search mechanisms
such as the non-adjacent pairwise interchange (NAPI),
the extraction and forward shifted reinsertion (EFSR),
and the extraction and backward shifted reinsertion (EBSR).
Generating too many individuals by seed selection may
prevent the robust search of HGA.

Calculation of Individual’s Fitness

An individual with high objective value should have
a low fitness value, and vice versa. HGA transforms an
objective value of individual l into its fitness value (fscale)
by the following equation:

max min()() , for 1, ,− +

= =l
scale l

avg

z z zf l w
z
σσ ,

where zmax, zmin and zavg are the maximum, minimum and
average objective values in the current population, re-
spectively, and z(σl) is the objective value of individual l.
When the difference between normalized objective val-
ues of individuals in a population is relatively small, the
selection process may become a random walk. In this
case, the fitness value of individual l (frank) by rank can
be calculated below:

2([]) , for 1, ,
(1)

= =
+rank l
lf l w

w w
σ ,

where [σl] is the lth individual in a descending order of
objective function values.

Selection

HGA adopts the stochastic remainder selection pro-
cedure without replacement to determine the expected
number of copies of individual l, E(l) , l = 1, …, w, in
the mating pool. E(l) can be calculated as follows:

1
() () / (), for 1, ,

=

= =∑
w

l j
j

E l wf f l wσ σ ,

where ()lf σ is the fitness value of individual l. If E(l)
is non-integer, for some l, then only ⎣E(l)⎦ copies of
individual l are assigned to the mating pool, and addi-
tional individuals need to be selected from the current
population. Bernoulli trials (weighted coin tosses) with
success probabilities Ps(l) = E(l) – ⎣E(l)⎦ are performed
to individual l one by one until the mating pool is full.
When individual l is selected, Ps(l) is reduced to 0.

Recombination Operators (Crossover and Mutation)
HGA adopts PMX with a constant crossover prob-

ability (rate). Under PMX, two crossover points are pic-
ked at random. The genes in an individual that are posi-
tioned in the section bounded by the two crossover po-
ints are matched (connected) to genes in the correspond-
ing positions of the other individual. If two pairs of con-
nected genes share the same value (or allele), the com-
mon gene is eliminated and the two remaining genes are
combined into a single connection. After all the reduc-
tions of this type are completed, the remaining pairs of
connected genes form the match table. Finally, the genes
in the first and last sections are exchanged if they are
included in the match table. For example, suppose that A
and B are the individuals chosen for crossover such that
A = (7 3 2 6 4 5 1) and B = (4 3 7 2 5 1 6), and the two
crossover points are 2 and 5. First, the genes between
two crossover points are swapped (2, 6, 4 of A and 7, 2,
5 of B). Second, the genes before the first crossover po-
int and after the second crossover points are exchanged
according to the match table (7 ↔ 6, 5 ↔ 4) Then, the
resulting individuals by PMX are A’ = (6 3 7 2 5 4 1)
and B’ = (5 3 2 6 4 1 7).

HGA adopts the adjacent swap method with a con-
stant mutation rate in which a job is exchanged with the
next job in the job sequence. If the last job is to be mu-
tated, it is exchanged with the first job in the job se-
quence.

Development

The premature convergence of many GAs can be
overcome by using the stochastic remainder selection
procedure without replacement (Goldberg, 1989), since
the maximum number of copies of individual l, l = 1,
…, w, in the mating pool is bounded and thus, high fit
individuals cannot prevail in the early generations. How-
ever, using this selection scheme may increase the prob-
ability of selecting the least fit individuals in compari-
son with other selection schemes such as the roulette
wheel selection method. The selection of the least fit in-
dividuals may provide low fit offsprings and, in turn,
severely decrease the search power for the best solutions.
HGA applies a non-adjacent pairwise interchange (NAPI)
method to the least fit individual in the mating pool, and
replaces the least fit individual by the best individual in
its neighborhood. The combination of the stochastic re-
mainder selection procedure without replacement and
NAPI prevents high fit individuals from dominating the
population in the early generations and also maintains
the GA search power to reach for the best solutions.

Hybrid Genetic Algorithm (HGA)
Step 0 (Initialization)
In a preliminary test, the best set of following parame-
ters is determined before the main test: Method of fitness
value calculation, population size, number of generation,
crossover probability, mutation probability, number of
individuals generated by seed selection

Yoon: Management Science and Financial Engineering
Vol 20, No 2, November 2014, pp.33-37, © 2014 KORMS 36

Table 2. Results for Medium and Large Size Problems

HGA GA % Dev
(zg-zh/zg)x100No. of

Jobs
No. of

Machines
Avg. obj. value (zh) Max obj. value Avg. obj. value (zg) Max obj. value

10

2
3
4
5

26.45
22.15
19.93
18.49

30.34
24.49
21.87
19.78

27.04
23.49
20.59
19.10

31.00
25.61
22.79
20.47

2.19
5.71
3.19
3.20

15

2
3
4
5

51.87
42.75
37.17
34.25

58.59
46.30
39.63
36.01

56.52
45.34
40.03
36.37

61.88
48.08
43.23
38.09

8.22
5.71
7.15
5.83

20

2
3
4
5

85.26
72.48
61.49
56.04

89.98
77.14
65.32
60.06

100.92
80.59
68.79
61.45

110.82
88.00
73.19
64.32

15.52
10.06
10.60
8.80

30

2
3
4
5

182.20
146.94
125.82
112.20

194.87
163.85
137.30
120.81

226.21
170.22
146.67
123.68

252.73
178.63
154.85
133.13

19.46
13.68
14.22
9.29

Average 68.52 74.47 77.94 84.18 8.93

Step 1 (Construction of an initial population)
(a) Generate predetermined number of individuals using

a random number generator.
(b) Generate the rest of individuals by seed selection

Step 2 (Evaluation and selection)
(a) Obtain objective values of individuals in the popula-

tion
(b) Compute the fitness values of individuals in the po-

pulation.
(c) Use the stochastic remainder sampling without re-

placement to select individuals from the population
to form a mating pool.

Step 3 (Development)
Apply the NAPI method to find the best individual in
the neighborhood of the least fit individual selected in
Step 2(c). Replace the least fit individual in the mating
pool by the best individual in the neighborhood.

Step 4 (Reproduction)
(a) Mate individuals in the mating pool randomly.
(b) Apply PMX with a constant crossover rate to the

couples.
(c) Apply the adjacent swap method with a constant

mutation rate to the offsprings produced by PMX.

Step 5 (Termination test)
If HGA reaches the maximum number of generations,
stop. Otherwise, go to Step 2.

4. COMPUTATIONAL STUDY

The HGA and GA were coded in Visual FORTRAN

and ran on an Intel Core i7 CPU@3.4 GHz PC. Since no
sample problems were found in the literature that could
be used as a benchmark for testing the proposed HGA,
the test problems were generated randomly. Processing
times and release times of jobs were generated accord-
ing to the integer uniform distributions provided in Ta-
ble 1.

Table 1. Data Used to Generate Test Problems (All Data

are Integers)

Data Value
Number of jobs 5, 7, 10, 15, 20, 30
Number of machines 2, 3, 4, 5
Job processing times Uniform(1, 31)
Job release times Uniform(1, 6)

The experiments were divided into two parts: a pre-

liminary test and a main test. Since the performances of
GA and HGA are influenced by several control parame-
ters, a preliminary test is necessary to achieve the best
parameter set for GA and HGA. In the preliminary test,
5 test problems of different sizes generated according to
the data in Table 1 were solved. The best average objec-
tive function value was obtained by using the fitness
function by rank, a total of 10 seed individuals, a popu-
lation size of 100, a total of 100 generations, a crossover
rate of 1.0, and a mutation rate of 0.01.

The test problems for the main test were generated
in a similar way. Nine different test problems were gen-
erated for each problem size. These 216 problems were
solved by HGA. For small size flow shop problems (5
and 7 jobs and 2-5 machines), the results of HGA were
compared with the optimal solutions obtained by ex-

Minimizing the Total Stretch in Flow Shop Scheduling
Vol 20, No 2, November 2014, pp.33-37, © 2014 KORMS 37

haustive search. HGA achieved optimal solutions for all
small size problems. HGA was applied to medium size
(10 and 15 jobs and 2-5 machines) and large size (20
and 30 jobs and 2-5 machines) problems. To evaluate
the performance of HGA, the solutions obtained by
HGA were compared with the solutions provided by GA.
The results of HGA and GA for medium and large size
problems are shown in Table 2. The average objective
function values reported in Table 2 are the average val-
ues of nine instances for each problem size. Based on
these results, HGA provides an 8.93% improvement
with respect to GA on the average.

5. CONCLUSIONS

This paper addresses the problem of minimizing
the total stretch in the n-job, m-machine flow shop.
Since this problem is NP-hard even for a single machine,
it requires significant computational effort to solve the
problems with large n. Meta-heuristic algorithms such
as GAs have been used for many scheduling problems.
HGA is proposed to reduce the premature convergence
of GAs and maintain the search power by adopting the
new idea of seed selection and development. The per-
formance of the HGA was compared with that of GA
and the results of the computational experiments show
that the HGA works well for this type of problem.

REFERENCES

Baker, K. R. and D. Trietsch, Principle of Sequencing

and Scheduling, Wiley, New Jersey, 2009.
Bender, M. A., S. Muthukrishnan, and R. Rajaraman,

“Approximation algorithms for average stretch sche-
duling,” Journal of Scheduling 7 (2004), 195-222.

Bhattacharyya, S., “Direct marketing performance mod-
eling using genetic algorithms.” INFORMS Journal
on Computing 11 (1999), 248-257.

Chan, W.-T., T.-W. Lan, K.-S. Liu, and P. W. H. Wong,
“New resource augmentation analysis of the total
stretch of SRPT and SJF in multiprocessor schedul-
ing,” Theoretical Computer Science 359 (2006),
430-439.

Dreo, J., A. Petrowski, P. Siarry, and E. Taillard, Meta-
heuristics for Hard Optimization: Methods and Case
Studies, Springer, New York, 2005.

Goldberg, D. E. Genetic Algorithms in Search, Optimi-
zation and Machine Learning, Addison-Wesley,
Reading, MA, 1989.

Lee, C.-Y., S. Piramuthu, and Y.-K. Tsai, “Job shop
scheduling with a genetic algorithm and machine
learning,” International Journal of Production Re-
search 35 (1997), 1171-1191.

Liepins, G. E. and M. R. Hilliard, “Genetic algorithms:
Foundation and applications,” Annals of Operations
Research 21, 1~4 (1989), pp. 31-58.

Muthukrishnan, S., R. Rajaraman, A. Shaheen, and J. F.
Gehrke, “Online scheduling to minimize average
stretch,” Siam Journal on Computing 34, 2 (2005),
433-452.

Pinedo, M. L,, Scheduling: Theory, Algorithms, and Sys-
tems (4th Ed.), Springer, New York, 2012.

