DOI QR코드

DOI QR Code

Passively Mode-Locked 1.93-㎛ All-Fiberized Femtosecond MOPA Laser Using a Gold-Deposited Side-Polished Fiber

금 증착 측면연마 광섬유를 이용한 1.93㎛ 모드잠금 펨토초 전광섬유 MOPA 레이저

  • Jung, Minwan (School of Electrical and Computer Engineering, University of Seoul) ;
  • Koo, Joonhoi (School of Electrical and Computer Engineering, University of Seoul) ;
  • Lee, Ju Han (School of Electrical and Computer Engineering, University of Seoul)
  • 정민완 (서울시립대학교 전자전기컴퓨터공학부) ;
  • 구준회 (서울시립대학교 전자전기컴퓨터공학부) ;
  • 이주한 (서울시립대학교 전자전기컴퓨터공학부)
  • Received : 2014.08.20
  • Accepted : 2014.10.02
  • Published : 2014.12.25

Abstract

We experimentally demonstrate the use of a gold-deposited side-polished fiber as a $2-{\mu}m$-band polarizing device to produce mode-locked pulses from a thulium/holmium-codoped fiber ring cavity. The mode-locking effect was induced by nonlinear transmission caused by the gold-deposited side-polished fiber, due to nonlinear polarization rotation of the oscillated beam within the fiberized cavity. It is also shown that ~558-fs pulses with a peak power of ~6.7 kW could readily be produced at a wavelength of 1935 nm through subsequent thulium/holmium-codoped fiber amplification, due to the higher-order soliton compression effect.

본 논문에서는 금이 증착된 측면연마 광섬유를 $2{\mu}m$ 대역 편광기로 이용하여 Thulium/Holmium 첨가 광섬유 기반 링 캐비티로부터 모드 잠금 레이저를 구현할 수 있음을 실험적으로 보였다. 모드 잠금 현상은 광섬유로 구성된 공진기 내부에서 진행하는 빔이 겪는 Nonlinear Polarization Rotation 현상에 기반하여 삽입된 금 증착 측면연마 광섬유에서 발생되는 Nonlinear Transmission 반응에 의해 유도되었다. 또한 공진기로부터 발생되는 출력 $1.93{\mu}m$ 파장의 광펄스를 Thulium/Holmium 첨가 광섬유 증폭기를 통과시켜 Higher Order Soliton Effect를 통해 압축시킴으로써 최대 첨두 출력 ~6.7 kW를 갖는 펄스폭 ~558 fs의 고출력 펨토초 펄스를 얻을 수 있음을 실험적으로 보였다.

Keywords

References

  1. G. D. Spiers, R. T. Menzies, J. Jacob, L. E. Christensen, M. W. Phillips, Y. Choi, and E. V. Browell, "Atmospheric $CO_2$ measurements with a 2 ${\mu}m$ airborne laser absorption spectrometer employing coherent detection," Appl. Opt. 50, 2098-2111 (2011). https://doi.org/10.1364/AO.50.002098
  2. K. D. Polder and S. Bruce, "Treatment of melasma using a novel 1,927-nm fractional thulium fiber laser: A pilot study," Dermatol Surg. 38, 199-206 (2012). https://doi.org/10.1111/j.1524-4725.2011.02178.x
  3. R. J. De Young and N. P. Barnes, "Profiling atmospheric water vapor using a fiber laser lidar system," Appl. Opt. 49, 562-567 (2010). https://doi.org/10.1364/AO.49.000562
  4. M. Jung and J. H. Lee, "Actively Q-switched, Thulium- Holmium-codoped fiber laser incorporating a silicon-based variable optical attenuator-based Q switch," Appl. Opt. 52, 2706-2710 (2013). https://doi.org/10.1364/AO.52.002706
  5. Y. M. Chang, J. Lee, and J. H. Lee, "Active mode-locking of an erbium-doped fiber laser using an ultrafast siliconbased variable optical attenuator," Japanese Journal of Applied Physics 51, 072701 (2012). https://doi.org/10.7567/JJAP.51.072701
  6. Y. Joeng, Y. Kim, A. Liem, K. Moerl, S. Hoefer, A. Tuennermann, and K. Oh, "Q-switching of $Yb^{3+}$-doped fiber laser using a novel micro-optical waveguide on micro actuating platform light modulator," Opt. Express 13, 10302-10309 (2005). https://doi.org/10.1364/OPEX.13.010302
  7. R. J. Williams, N. Jovanovic, G. D. Marshall, and M. J. Withford, "All-optical, actively Q-switched fiber laser," Opt. Express 18, 7714-7723 (2010). https://doi.org/10.1364/OE.18.007714
  8. H. D. Lee, J. H. Lee, M. Y. Jeong, and C.-S. Kim, "Characterization of wavelength-swept active mode locking fiber laser based on reflective semiconductor optical amplifier," Opt. Express 19, 14586-14593 (2011). https://doi.org/10.1364/OE.19.014586
  9. W. Seitz, R. Ell, U. Morgner, T. R. Schibli, F. X. Kartner, M. J. Lederer, and B. Braun, "All-optical active mode locking with a nonlinear semiconductor modulator," Opt. Lett. 27, 2209-2211 (2002). https://doi.org/10.1364/OL.27.002209
  10. J. Koo and J. H. Lee, "Passive Q-switching of a fiber laser using a side-polished birefringent fiber with index matching gel spread on the flat side," Appl. Phys. B: Lasers and Optics 112, 61-65 (2013). https://doi.org/10.1007/s00340-013-5397-2
  11. S. Y. Choi, D. K. Cho, Y.-W. Song, K. Oh, K. Kim, F. Rotermund, and D.-I. Yeom, "Graphene-filled hollow optical fiber saturable absorber for efficient soliton fiber laser mode-locking," Opt. Express 20, 5652-5657 (2012). https://doi.org/10.1364/OE.20.005652
  12. J. Koo, Y.-W. Song, and J. H. Lee, "A carbon nanotubeembedded fiber-optic tunable coupler for flexible repetition rate control of a passively Q-switched fiber laser," Laser Phys. 24, 045105 (2014). https://doi.org/10.1088/1054-660X/24/4/045105
  13. Y. Zhang, V. Petrov, U. Griebner, X. Zhang, S. Y. Choi, J. Y. Gwak, F. Rotermund, X. Mateos, H. Yu, H. Zhang, and J. Liu, "90-fs diode-pumped Yb:CLNGG laser mode-locked using single-walled carbon nanotube saturable absorber," Opt. Express 22, 5635 (2014). https://doi.org/10.1364/OE.22.005635
  14. H. Yang, H. Kim, J. Shin, C. Kim, S. Y. Choi, G. H. Kim, F. Rotermund, and J. Kim, "Gigahertz repetition rate, subfemtosecond timing jitter optical pulse train directly generated from a mode-locked Yb:KYW laser," Opt. Lett. 39, 56 (2014). https://doi.org/10.1364/OL.39.000056
  15. A. Wienke, F. Haxsen, D. Wandt, U. Morgner, J. Neumann, and D. Kracht, "Ultrafast, stretched-pulse thulium-doped fiber laser with a fiber-based dispersion management," Opt. Lett. 37, 2466-2468 (2012). https://doi.org/10.1364/OL.37.002466
  16. L.-M. Yang, P. Wan, V. Protopopov, and J. Liu, "2 ${\mu}m$ femtosecond fiber laser at low repetition rate and high pulse energy," Opt. Express 20, 5683-5688 (2012). https://doi.org/10.1364/OE.20.005683
  17. M. A. Chernysheva, A. A. Krylov, P. G. Kryukov, N. R. Arutyunyan, A. S. Pozharov, E. D. Obraztsova, and E. M. Dianov, "Thulium-doped mode-locked all-fiber laser based on NALM and carbon nanotube saturable absorber," Opt. Express 20, B124-B130 (2012). https://doi.org/10.1364/OE.20.00B124
  18. J. Liu, S. Wu, J. Xu, Q. Wang, Q.-H. Yang, and P. Wang, "Mode-locked 2 ${\mu}m$ thulium-doped fiber laser with graphene oxide saturable absorber," in Proc. CLEO, JW2A.76 (2012).
  19. M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F.Wang, A. C. Ferrari, S. V. Popov, and J. R. Taylor, "Tm-doped fiber laser mode-locked by graphene-polymer composite," Opt. Express 20, 25077-25084 (2012). https://doi.org/10.1364/OE.20.025077
  20. M. Jung, J. Koo, P. Debnath, Y.-W. Song, and J. H. Lee, "A mode-locked 1.91 ${\mu}m$ fiber laser based on interaction between graphene oxide and evanescent field," Appl. Phys. Express 5, 112702 (2012). https://doi.org/10.1143/APEX.5.112702
  21. M. Jung, J. Koo, J. Park, Y.-W. Song, Y. M. Jhon, K. Lee, S. Lee, and J. H. Lee, "Mode-locked pulse generation from an all-fiberized, Tm-Ho-codoped fiber laser incorporating a graphene oxide-deposited side-polished fiber," Opt. Express 21, 20062-20072 (2013). https://doi.org/10.1364/OE.21.020062
  22. M. Jung, J. Lee, J. Koo, J. Park, Y.-W. Song, K. Lee, S. Lee, and J. H. Lee, "A femtosecond pulse fiber laser at 1935 nm using a bulk-structured $Bi_2Te_3$ topological insulator," Opt. Express 22, 7865-7874 (2014). https://doi.org/10.1364/OE.22.007865
  23. R. Kadel and B. R. Washburn, "All-fiber passively modelocked thulium/holmium laser with two center wavelengths," Appl. Opt. 51, 6465-6470 (2012). https://doi.org/10.1364/AO.51.006465
  24. X. He, A. Luo, Q. Yang, T. Yang, X. Yuan, S. Xu, Q. Qian, D. Chen, Z. Luo, W. Xu, and Z. Yang, "60 nm bandwidth, 17 nJ noiselike pulse generation from a thulium-doped fiber ring laser," Appl. Phys. Express 6, 112702 (2013). https://doi.org/10.7567/APEX.6.112702
  25. R. B. Dyott, J. Bello, and V. A. Handerek, "Indium-coated D-shaped-fiber polarizer," Opt. Lett. 12, 287-289 (1987). https://doi.org/10.1364/OL.12.000287
  26. R. H. Stolen and C. Lin, "Self-phase-modulation in silica optical fibers," Phys. Rev. A 17, 1448 (1978). https://doi.org/10.1103/PhysRevA.17.1448
  27. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).