DOI QR코드

DOI QR Code

대구지역 폐수처리장에서 분리한 cefotaxime-resistant Escherichia coli의 특성

Characterization of cefotaxime-resistant Escherichia coli isolated from wastewater treatment plant in Daegu

  • 김환득 (대구광역시보건환경연구원) ;
  • 박대현 (대구광역시보건환경연구원) ;
  • 이미리 (대구광역시보건환경연구원) ;
  • 김은정 (대구광역시보건환경연구원) ;
  • 조재근 (대구광역시보건환경연구원)
  • Kim, Hwan-Deuk (Metropolitan Health & Enviornmental Research Institute) ;
  • Park, Dae-Hyun (Metropolitan Health & Enviornmental Research Institute) ;
  • Lee, Mi-Ree (Metropolitan Health & Enviornmental Research Institute) ;
  • Kim, Eun-Jeong (Metropolitan Health & Enviornmental Research Institute) ;
  • Cho, Jae-Keun (Metropolitan Health & Enviornmental Research Institute)
  • 투고 : 2014.08.19
  • 심사 : 2014.11.21
  • 발행 : 2014.12.30

초록

In this study, 185 cefotaxime-resistant Escherichia coli were isolated from different stages of a wastewater treatment plant (WWTP) in Daegu in Korea. Among them, 99.5% (184 isolates) originated from raw sewage and 0.5% (1 isolates) from the final effluent. Cefotaxime-resistant E. coli were high resistant to ampicillin, piperacillin, cefazolin, cephalothin, cefachlor and cefamandole (99.5~100%). About 93% of the cefotaxime-resistant E. coli were extended-spectrum ${\beta}$-lactamases (ESBL)-producing E. coli. The $bla_{TEM+CTX}$ gene was the most predominant of the ESBL genes (72.5%), followed by $bla_{CTX-M}$ (16.2%), $bla_{TEM}$ (8.7%), $bla_{TEM+CTX+SHV}$ (1.1%), $bla_{TEM+SHV}$, $bla_{TEM+OXA}$, and $bla_{TEM+CTX+SHV}$ (respectvely 0.5%). Class 1 and 2 integron were found in 49.7% and class 3 integron was not found. All of integron positive isolates were multiresistant (i.e. resistant to four or more antibiotics). Our findings showed WWTP is contaminated with antibiotic resistant bacteria with resistance genes.

키워드

참고문헌

  1. 식품의약품안전청. 2006. 환경 중 항생제 내성균 모니터링.
  2. Ash RJ, Mauck B, Morgan M. 2002. Antibiotic resistance of gram-negative bacteria in rivers, United States. Emerg Infect Dis 8: 713-716. https://doi.org/10.3201/eid0807.010264
  3. Baquero F, Martínez JL, Canton R. 2008. Antibiotics and antibiotic resistance in water environments. Curr Opin Biotechnol 19: 260-265. https://doi.org/10.1016/j.copbio.2008.05.006
  4. Bradford PA. 2001. Extended-spectrum $\beta$-lactamases in the 21st century: Characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev 14: 933-951. https://doi.org/10.1128/CMR.14.4.933-951.2001
  5. Bauer AW, Kirby WM, Sherris JC, Turck M. 1966. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 45: 493-496. https://doi.org/10.1093/ajcp/45.4_ts.493
  6. Cambray G, Guerout A, Mazel D. 2010. Integrons. Annu RevGen 44: 141-166.
  7. Chen H, Shu W, Chang X, Chen JA, Guo Y, Tan Y. 2010. The profile of antibiotics resistance and integrons of extended-spectrum beta-lactamase producing thermotolerant coliforms isolated from the Yangtze River basin in Chongqing. Environ Pollut 158: 2459-2464. https://doi.org/10.1016/j.envpol.2010.03.023
  8. Cho JK, Sung MS, Kim JH, Kim KS. 2011. Detection of CTX-M and TEM type extended-spectrum $\beta$-lactamases in Escherichia coli isolated from livestocks in Korea. Kor J Vet Serv 34: 37-43. https://doi.org/10.7853/kjvs.2011.34.1.037
  9. Cho JK, Kim HD, Kwon SH, Kim JH, Jang SI, Park CK, Kim KS. 2014. Prevalence of antimicrobial resistance and integrons in extended-spectrum $\beta$-lactamases producing Escherichia coli isolated from Nakdong and Gumho river in Korea. Korean J Vet Serv 34: 19-27.
  10. CLSI. Clinical and Laboratory Standards Institute. 2012. Performance standards for antimicrobial susceptibility testing; Twenty-second informational supplement. M100-S22. Wayne, Pa, USA.
  11. Cocchi S, Grasselli E, Gutacker M, Benagli C, Convert M, Piffaretti JC. 2007. Distribution and characterization of integrons in Escherichia coli strains of animal and human origin. FEMS Immunol Med Microbiol 50: 126-132. https://doi.org/10.1111/j.1574-695X.2007.00242.x
  12. Dhanji H, Murphy NM, Akhigbe C, Doumith M, Hope R, Livermore DM, Woodford N. 2011. Isolation of fluoroquinolone-resistant O25b:H4-ST131 Escherichia coli with CTX-M-14 extended-spectrum $\beta$-lactamase from UK river water. J Antimicrob Chemother 66: 512-516. https://doi.org/10.1093/jac/dkq472
  13. Fang H, Ataker F, Hedin G, Dornbusch K. 2008. Molecular epidemiology of extended-spectrum beta-lactamases among Escherichia coli isolates collected in a Swedish hospital and its associated health care facilities from 2001 to 2006. J Clin Microbiol 46: 707-712. https://doi.org/10.1128/JCM.01943-07
  14. Frank T, Gautier V, Talarmin A, Bercion R, Arlet G. 2007. Characterization of sulphonamide resistance genes and class 1 integron gene cassettes in Enterobacteriaceae, Central African Republic (CAR). J Antimicrob Chemother 59: 742-745. https://doi.org/10.1093/jac/dkl538
  15. Ferreira da Silva M, Vaz-Moreira I, Gonzalez-Pajuelo M, Nunes OC, Manaia CM. 2007. Antimicrobial resistance patterns in Enterobacteriaceae isolated from an urban wastewater treatment plant. FEMS Microbiol Ecol 60: 166-176. https://doi.org/10.1111/j.1574-6941.2006.00268.x
  16. Jang J, Suh YS, Di DY, Unno T, Sadowsky MJ, Hur HG. 2013. Pathogenic Escherichia coli strains producing extended-spectrum $\beta$-lactamases in the Yeongsan river basin of South Korea. Environ Sci Technol 47: 1128-1136. https://doi.org/10.1021/es303577u
  17. Kang HY, Jeong YS, Oh JY, Tae SH, Choi CH, Moon DC, Lee WK, Lee YC, Seol SY, Cho DT, Lee JC. 2005b. Characterization of antimicrobial resistance and class 1 integrons found in Escherichia coli isolates from humans and animals in Korea. J Antimicrob Chemother 55: 639-644. https://doi.org/10.1093/jac/dki076
  18. Kang SG, Lee DY, Shin SJ, Ahn JM, Yoo HS. 2005a. Changes in patterns of antimicrobial susceptibility and class 1 integron carriage among Escherichia coli isolates. J Vet Sci 6: 201-205.
  19. Kim J, Kang HY, Lee Y. 2008. The identification of CTX-M-14, TEM-52, and CMY-1 enzymes in Escherichia coli isolated from the Han River in Korea. J Microbiol 46: 478-481. https://doi.org/10.1007/s12275-008-0150-y
  20. Kim JH, Zheng XH, Cho JK, Sung MS, Kim KS. 2012. Prevalence and characterization of extended-spectrum $\beta$-lactamase among Escherichia coli isolated from Geumho river in Korea. J Pure and Appl Microb 6: 989-1000.
  21. Koczura R, Mokracka J, Jablonska L, Gozdecka E, Kubek M, Kaznowski A. 2012. Antimicrobial resistance of integron-harboring Escherichia coli isolates from clinical samples, wastewater treatment plant and river water. Sci Total Environ 414: 680-685. https://doi.org/10.1016/j.scitotenv.2011.10.036
  22. Laroche E, Pawlak B, Berthe T, Skurnik D, Petit F. 2009. Occurrence of antibiotic resistance and class 1, 2 and 3 integrons in Escherichia coli isolated from a densely populated estuary (Seine, France). FEMS Microbiol Ecol 68: 118-130. https://doi.org/10.1111/j.1574-6941.2009.00655.x
  23. Lee SG, Jeong SH, Lee H, Kim CK, Lee Y, Koh E, Chong Y, Lee K. 2009. Spread of CTX-M- type extended-spectrum beta-lactamases among bloodstream isolates of Escherichia coli and Klebsiella pneumoniae from a Korean hospital. Diagn Microbiol Infect Dis 63: 76-80. https://doi.org/10.1016/j.diagmicrobio.2008.09.002
  24. Li B1, Zhang T.2011. Mass flows and removal of antibiotics in two municipal wastewater treatment plants. Chemosphere 83: 1284-1289. https://doi.org/10.1016/j.chemosphere.2011.03.002
  25. Lu SY, Zhang YL, Geng SN, Li TY, Ye ZM, Zhang DS, Zou F, Zhou HW. 2010. High diversity of extended-spectrum beta-lactamase-producing bacteria in an urban river sediment habitat. Appl Environ Microbiol 76: 5972-5976. https://doi.org/10.1128/AEM.00711-10
  26. Martinez JL. 2008. Antibiotics and antibiotic resistance genes in natural environments. Science 18: 365-367.
  27. Martinez JL 2009. Environmental pollution by antibiotics and by antibiotic resistance determinants. Environ Pollut 157: 2893-2902. https://doi.org/10.1016/j.envpol.2009.05.051
  28. Mazel D, Dychinco B, Webb VA, Davies J. 2000. Antibiotic resistance in the ECOR collection: integrons and identification of a novel aad gene. Antimicrob Agents Chemother 44: 1568-1574. https://doi.org/10.1128/AAC.44.6.1568-1574.2000
  29. Michael I1, Rizzo L, McArdell CS, Manaia CM, Merlin C, Schwartz T, Dagot C, Fatta-Kassinos D. 2013. Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: a review. Water Res 47: 957-995. https://doi.org/10.1016/j.watres.2012.11.027
  30. Mokracka J, Koczura R, Kaznowski A. 2012. Multiresistant Enterobacteriaceae with class 1 and class 2 integrons in a municipal wastewater treatment plant. Water Res 46: 3353-3363. https://doi.org/10.1016/j.watres.2012.03.037
  31. Moura A, Henriques I, Ribeiro R, Correia A. 2007. Prevalence and characterization of integrons from bacteria isolated from a slaughterhouse wastewater treatment plant. J Antimicrob Chemother. 60: 1243-1250. https://doi.org/10.1093/jac/dkm340
  32. Paterson DL, Bonomo RA. 2005. Extended-spectrum beta-lactamases: a clinical update. Clin Microbiol Rev 18: 657-686. https://doi.org/10.1128/CMR.18.4.657-686.2005
  33. Reinthaler FF, Feierl G, Galler H, Haas D, Leitner E, Mascher F, Melkes A, Posch J, Winter I, Zarfel G, Marth E. 2010. ESBL-producing Escherichia coli in Austrian sewage sludge. Water Res 44: 1981-1985. https://doi.org/10.1016/j.watres.2009.11.052
  34. Su HC, Ying GG, Tao R, Zhang RQ, Zhao JL, Liu YS. 2012. Class 1 and 2 integrons, sul resistance genes and antibiotic resistance in Escherichia coli isolated from Dongjiang River, South China. Environ Pollut 169: 42-49. https://doi.org/10.1016/j.envpol.2012.05.007
  35. Yu HS, Lee JC, Kang HY, Ro DW, Chung JY, Jeong YS, Tae SH, Choi CH, Lee EY, Seol SY, Lee YC, Cho DT. 2003. Changes in gene cassettes of class 1 integrons among Escherichia coli isolates from urine specimens collected in Korea during the last two decades. J Clin Microbiol 41: 5429-5433. https://doi.org/10.1128/JCM.41.12.5429-5433.2003