DOI QR코드

DOI QR Code

Study on the Magnetic Characteristics of Anisotropic SmCo7-type Alloys Synthesized by High-energy Surfactant-assisted Ball Milling

  • Yu, N.J. (Magnetism Key Laboratory of Zhejiang Province, China Jiliang University) ;
  • Zhang, P.Y. (Magnetism Key Laboratory of Zhejiang Province, China Jiliang University) ;
  • Shi, Y.J. (Magnetism Key Laboratory of Zhejiang Province, China Jiliang University) ;
  • Pan, M.X. (Magnetism Key Laboratory of Zhejiang Province, China Jiliang University) ;
  • Zhang, S.Y. (Magnetism Key Laboratory of Zhejiang Province, China Jiliang University) ;
  • Ge, H.L. (Magnetism Key Laboratory of Zhejiang Province, China Jiliang University) ;
  • Lu, Y.C. (Zhejiang Kevin Magnet Co. Ltd.)
  • Received : 2014.07.04
  • Accepted : 2014.09.11
  • Published : 2014.12.31

Abstract

An effective process was employed for synthesizing anisotropic magnetic $SmCo_7$-type alloy flakes with high coercivity, which is highly desirable for many applications. The highest coercivity of 16.3 kOe corresponds to a typical flake thickness of 200 nm for the 3-h ball-milled sample. The anisotropy field was calculated by measuring the parallel and perpendicular directions to the easy magnetization direction of the powders. The anisotropy field decreased with the increase of the ball milling time, thus indicating that the decrease of coercivity was mainly caused by the reduction of the anisotropy field. Microstructure analysis indicated that the morphology, grain size, and anisotropy field of these samples have a great influence on the magnetic properties.

Keywords

References

  1. Y. Q. Guo, W. Li, J. Luo, W. C. Feng, and J. K. Liang, J. Magn. Magn. Mater. 303, e367 (2006). https://doi.org/10.1016/j.jmmm.2006.01.036
  2. T. V. Jayaraman and J. E. Shield, Acta Mater. 60, 1184 (2012). https://doi.org/10.1016/j.actamat.2011.10.052
  3. K. J. Steant, G. Hoffer, J. Oison, W. Ostertag, and J. J. Becker, J. Appl. Phys. 38, 1001 (1967). https://doi.org/10.1063/1.1709459
  4. K. J. Strant and R. M. W. Strant, J. Magn. Magn. Mater. 100, 38 (1991). https://doi.org/10.1016/0304-8853(91)90811-N
  5. A. E. Ray, J. Appl. Phys. 55, 2094 (1984). https://doi.org/10.1063/1.333575
  6. K. H. J. Buschow and A. S. van der Goot, J. Less-Common Met. 14, 323 (1968). https://doi.org/10.1016/0022-5088(68)90037-4
  7. R. K. Mishra, G. Thomas, T. Yoneyama, A. Fukino, and T. Ojima, J. Appl. Phys. 52, 2517 (1981). https://doi.org/10.1063/1.328987
  8. G. C. Hadjipanayis, W. Tang, Y. Zhang, et al., IEEE Trans. Magn. 36, 3382 (2000). https://doi.org/10.1109/20.908808
  9. Y. Zhang, Q. Zeng, and G. C. Hadjipanayis, J. Appl. Phys. 97, 10H107-3 (2005). https://doi.org/10.1063/1.1853851
  10. Y. Q. Guo, W. C. Feng, and W. Li, J. Appl. Phys. 101, 023919-7 (2007). https://doi.org/10.1063/1.2432103
  11. M. Q. Huang, W. E. Wallace, W. E. Mchenry, Q. Chen, and B. M. Ma, J. Appl. Phys. 83, 6718 (1998). https://doi.org/10.1063/1.367655
  12. I. A. Al-Omari, Y. Yeshurun, J. Zhou, and D. J. Sellmyer, J. Appl. Phys. 87, 6710 (2000). https://doi.org/10.1063/1.372816
  13. J. Zhou, I. A. Al-Omari, J. P. Liu, and D. J. Sellmyer, J. Appl. Phys. 87, 5299 (2000). https://doi.org/10.1063/1.373327
  14. J. Luo, J. K. Liang, Y. Q. Guo, Q. L. Liu, L. T. Yang, F. S. Liu, et al. Appl. Phys. Lett. 84, 3094 (2004). https://doi.org/10.1063/1.1712026
  15. J. Luo, J. K. Liang, Y. Q. Guo, Q. L. Liu, L. T. Yang, F. S. Liu, Y. Zhang, et al. Appl. Phys. Lett. 85, 5299 (2004). https://doi.org/10.1063/1.1829157
  16. K. S. Pal, L. Schultz, and O. Gutfleisch, J. Appl. Phys. 113, 013913 (2013). https://doi.org/10.1063/1.4773323
  17. G. C. Hadjipanayis, J. Magn. Magn. Mater. 200, 373 (1999). https://doi.org/10.1016/S0304-8853(99)00430-8
  18. J. M. D. Coey, J. Magn. Magn. Mater. 140-144, 1041 (1995). https://doi.org/10.1016/0304-8853(94)00876-0
  19. J. P. Liu, F. R. de Boer, P. F. de Chatel, R. Coehoorn, and K. H. J. Buschow, J. Magn. Magn. Mater. 132, 159 (1994). https://doi.org/10.1016/0304-8853(94)90310-7
  20. E. F. Kneller and R. Hawig, IEEE Trans. Magn. 27, 3588 (1991). https://doi.org/10.1109/20.102931
  21. R. Skomski and J. M. D. Coey, Phys. Rev. B 48, 15812 (1993). https://doi.org/10.1103/PhysRevB.48.15812
  22. A. M. Gabay, M. Marinescu, J. F. Liu, and G. C. Hadjipanayis, J. Magn. Magn. Mater. 321, 3318 (2009). https://doi.org/10.1016/j.jmmm.2009.06.011
  23. N. Pligaru, J. Rubin, and J. Bartolome, J. Alloys Compd. 433, 129 (2007). https://doi.org/10.1016/j.jallcom.2006.06.038
  24. C. Rong, V. V. Nguyen, and J. P. Liu, J. Appl. Phys. 107, 09A717 (2010). https://doi.org/10.1063/1.3337656
  25. A. Yan, W. Y. Zhang, H. W. Zhang, and B. G. Shen, J. Magn. Magn. Mater. 210, L10 (2000). https://doi.org/10.1016/S0304-8853(99)00614-9
  26. G. B. Han, R. W. Gao, S. S. Yan, H. Q. Liu, S. Fu, W. C. Feng, W. L, and X. M. Li, J. Magn. Magn. Mater. 281, 6 (2004). https://doi.org/10.1016/j.jmmm.2004.03.039