DOI QR코드

DOI QR Code

ESTIMATIONS OF HEAT CAPACITIES FOR ACTINIDE DIOXIDE: UO2, NpO2, ThO2, AND PuO2

  • Eser, E. (Department of Physics, Polatli Faculty of Arts and Sciences, Gazi University) ;
  • Koc, H. (Department of Electricity and Energy, Vocational School, Mus Alparslan University) ;
  • Gokbulut, M. (Department of Physics, Faculty of Arts and Sciences, Gaziosmanpasa University) ;
  • Gursoy, G. (Department of Medical Services and Technical, Vocational School of Health Services, Ahi Evran University)
  • 투고 : 2014.03.05
  • 심사 : 2014.08.09
  • 발행 : 2014.12.25

초록

The evaluation of thermal properties of actinide oxide fuels is a problem of high importance for the development of new generation reactors. In the present study, an expression obtained for n-dimensional Debye functions is used to derive a simple analytical expression for the specific heat capacity of nuclear fuels. To test the validity and reliability of this expression, the analytical expression is applied to $UO_2$, $NpO_2$, $ThO_2$, and $PuO_2$. It is seen that the formula was in agreement with the experimental and theoretical results reported in the literature.

키워드

참고문헌

  1. A. E. Dubinov and A. A. Dubinova, Technical Physics Letters, vol. 34, pp. 999 (2008). https://doi.org/10.1134/S106378500812002X
  2. B. A. Mamedov, E. Eser, H. Koc, I. M. Askerov, International Journal of Thermophysics, vol. 30, pp.1048 (2009). https://doi.org/10.1007/s10765-009-0601-7
  3. B. T. M. Willis, Proc. Roy. Soc. (London) A, vol. 274, pp. 134 (1963). https://doi.org/10.1098/rspa.1963.0118
  4. D. Terentyev, Computational Materials Science, vol. 40, pp. 319-326 (2007). https://doi.org/10.1016/j.commatsci.2007.01.002
  5. D. R. Fredrickson and M.G. Chasanov, J. Chem.Thermodyn, vol. 2, pp. 623 (1970). https://doi.org/10.1016/0021-9614(70)90037-6
  6. D. T. Hagrman, editor, SCDAP/RELAP5/MOD3.1 code manual, Volume IV : MATPRO - Alibrary of materials properties for light-water-reactor accident analysis, NUREG/CR-6150, EGG-2720. vol: IV(1993).
  7. E. P. Loeven, P. E. McDonald, J. Hohorst, Recommended Thorium Materials Properties to FRACON-3. Proc. Int. Top. Meet. Top Fuel, Apr.10-13, ANS, USA (2000).
  8. F. L. Oetting, Journal of Nuclear Materials, vol. 105, pp. 2557 (1982).
  9. H. AitAbderrahim, P. Kupschus, E. Malambu, Ph. Benoit, K. Van Tichelen and et al., Nucl. Instrum. Methods Phys. Res. A, vol. 463, pp. 487 (2001). https://doi.org/10.1016/S0168-9002(01)00164-4
  10. H. Koc, E. Eser, B. A. Mamedov, Nuclear Engineering and Design,vol. 241, pp. 3678-3682 (2011). https://doi.org/10.1016/j.nucengdes.2011.07.020
  11. H. Serizawa, Y. Araiand, K. Nakajima, J. Chem. Thermodynamics,vol. 33, pp. 615-628 (2001). https://doi.org/10.1006/jcht.2000.0775
  12. H. Serizawa, Y. Arai, J. Alloys. Compd.,vol. 312, pp. 257 (2000). https://doi.org/10.1016/S0925-8388(00)01089-6
  13. H. Serizawa, Y. Arai, M. Takano, Y. Suzuki, J. Alloys. Comp.,vol. 282, pp.17 (1999). https://doi.org/10.1016/S0925-8388(98)00822-6
  14. H. Serizawa, Y. Arai, Y. Suzuki, Journal of Nuclear Materials, vol. 280, pp. 99 (2000). https://doi.org/10.1016/S0022-3115(00)00023-4
  15. I. Barin, Thermochemical Data of Pure Substances: 3rd edition, Vol. II. VCH: Weinheim., 1236 and 1657 (1995).
  16. I. I. Guseinov, B. A. Mamedov, International Journal of Thermophysics, vol. 28, pp. 1420 (2007). https://doi.org/10.1007/s10765-007-0256-1
  17. I. S. Golovnin, Properties of Plutonium Dioxide as Nuclear Fuel. -Atomnaia Energiya, vol. 89, pp.117 (2000).
  18. J. C. Southard, J. Am. Chem. Soc. vol. 63, pp. 3142 (1941). https://doi.org/10.1021/ja01856a072
  19. J. J. Carbajo, G. L. Yoder, S. G. Popov, V. K. Ivanov, Journal of Nuclear Materials,vol. 299, pp. 181-198 (2001). https://doi.org/10.1016/S0022-3115(01)00692-4
  20. J. K. Fink, International Journal of Thermophysics,vol. 165, pp. 3 (1982).
  21. J. K. Fink, Journal of Nuclear Materials,vol. 279, pp. 1-18 (2000). https://doi.org/10.1016/S0022-3115(99)00273-1
  22. J. P. Hiernaut, G. J. Hyland, C. Ronchi, International Journal of Thermophysics, vol. 14, pp. 259-283 (1993). https://doi.org/10.1007/BF00507813
  23. J. R. B. Roof, Journal of Nuclear Materials, vol. 2, pp. 39 (1960). https://doi.org/10.1016/0022-3115(60)90022-2
  24. Japan Thermal Measurement Society, Thermodynamics Data Base for Personal Computer MALT-2(1992).
  25. K. Aizawa, Prog. Nucl.Energy, vol. 40, pp. 349-356 (2002). https://doi.org/10.1016/S0149-1970(02)00028-8
  26. K. Bakker, E. H. P. Cordfunke, R. J. M. Konings, R. P. C. Schram, Journal of Nuclear Materials, vol. 250, pp. 1-12 (1997). https://doi.org/10.1016/S0022-3115(97)00241-9
  27. K. Ho Kang, Ho J. Ryu, K. C. Song, M. S. Yang, Journal of Nuclear Materials, vol. 301, pp. 242-244 (2002). https://doi.org/10.1016/S0022-3115(01)00712-7
  28. K. Kurosaki, K. Yamada, M. Uno, S. Yamanaka, K. Yamamoto, T. Namekawa, Journal of Nuclear Materials, vol. 294, pp. 160-167 (2011).
  29. K. Kurosaki, M. Imamura, I. Sato, T.Namekawa, M. Uno and S. Yamanaka, Journal of Nuclear Scienceand Technology, vol. 41, pp. 827-831 (2004). https://doi.org/10.1080/18811248.2004.9715552
  30. K. Kurosaki, M. Imamura, I. Sato, T. Namekawa, M. Uno and S. Yamanaka, Journal of Alloys and Compounds,vol. 387, pp. 9-14 (2005). https://doi.org/10.1016/j.jallcom.2004.06.037
  31. K. Minato, M. Takano, H. Otobe, T. Nishi, M. Akabori, Y. Arai, Journal of Nuclear Materials,vol. 389, pp. 23-28 (2009). https://doi.org/10.1016/j.jnucmat.2009.01.003
  32. K. Richter, C. Sari, Journal of Nuclear Materials, vol. 148, pp. 266 (1987). https://doi.org/10.1016/0022-3115(87)90019-5
  33. K. P. Ghatak, S. Bhattacharya, DeDebashis. Einstein Relation in Compound Semiconductors and Their Nanostructures, Springer Series in Materials Science, vol. 116 (2009).
  34. M. Chollet, R. C. Belin, J. C. Richaudand, F. Adenot, Procedia Chemistry, vol. 7, pp. 466 - 471 (2012). https://doi.org/10.1016/j.proche.2012.10.071
  35. M. Stan, P. Cristea, Trans. Am. Nucl. Soc. vol. 91, pp. 491 (2004)
  36. O. Benes, P. Gotcu-Freis, F. Schworer, R. J. M. Konings, Th. Fanghanel, Journal of Chemical. Thermodynamics, vol. 43, pp. 651-655 (2011). https://doi.org/10.1016/j.jct.2010.11.010
  37. O. L. Kruger, H. J. Savage, J. Chem. Phys., vol. 49, pp. 4540 (1968). https://doi.org/10.1063/1.1669909
  38. P. Debye, Annalen Der Physik, vol. 39, no. 14, pp. 789-839 (1912).
  39. P. Passler, Phys. Stat. Sol. (b) vol. 245, pp. 1133 (2008). https://doi.org/10.1002/pssb.200743480
  40. R. Agarwal, R. Prasad and V. Venugopal, Journal of Nuclear Materials, vol. 322, pp. 98-110 (2003). https://doi.org/10.1016/S0022-3115(03)00279-4
  41. R. E. Latta and R. E. Fryxell, Journal of Nuclear Materials, vol. 35, pp. 195 (1970). https://doi.org/10.1016/0022-3115(70)90100-5
  42. S. Li, R. Ahhuja, B. Johansson, High Pressure Research, vol. 22, pp. 471-474 (2002). https://doi.org/10.1080/08957950212818
  43. S. Minamoto, M. Kato, K. Konashi, Y. Kawazoe, Journal of Nuclear Materials, vol. 385, pp. 18-20 (2009). https://doi.org/10.1016/j.jnucmat.2008.10.024
  44. S. Sonmezoglu, International Journal of Modern Physics B, vol. 22, pp. 5349 (2008). https://doi.org/10.1142/S0217979208049418
  45. T. Nishi, A.Itoh, M. Takano, M. Numata, M. Akabori, Y. Arai, K. Minato, Journal of Nuclear Materials, vol. 376, pp. 78 (2008). https://doi.org/10.1016/j.jnucmat.2008.01.018
  46. T. Wakabayashi, Prog. Nucl. Energy, vol. 40, pp. 457-463 (2002). https://doi.org/10.1016/S0149-1970(02)00038-0
  47. T. Yamashita, N. Nitani, T. Tsuji, T. Kato, Journal of Nuclear Materials, vol. 247, pp. 90 (1997). https://doi.org/10.1016/S0022-3115(97)00031-7
  48. The SGTE Pure Substance and Solution databases, GTT-DATA SERVICES (1996).
  49. V. Sobolev and S. Lemehov, Journal of Nuclear Materials, vol. 352, pp. 300-308(2006). https://doi.org/10.1016/j.jnucmat.2006.02.077
  50. V. Sobolev, Journal of Nuclear Materials,vol. 344, pp. 198-205 (2005). https://doi.org/10.1016/j.jnucmat.2005.04.042
  51. V. Sobolev, Journal of Nuclear Materials,vol. 389, pp. 45-51 (2009). https://doi.org/10.1016/j.jnucmat.2009.01.005
  52. W. Nernst, A. F. Lindemann, Z. Elektrochem. Angew. Phys. Chem., vol. 17, pp. 817 (1911).