DOI QR코드

DOI QR Code

Differential Expression of PPARγ, FASN, and ACADM Genes in Various Adipose Tissues and Longissimus dorsi Muscle from Yanbian Yellow Cattle and Yan Yellow Cattle

  • Ji, Shuang (College of Animal Science, Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University) ;
  • Yang, Runjun (College of Animal Science, Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University) ;
  • Lu, Chunyan (College of Animal Science, Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University) ;
  • Qiu, Zhengyan (College of Animal Science, Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University) ;
  • Yan, Changguo (Department of Animal Science, College of Agriculture, Yanbian University) ;
  • Zhao, Zhihui (College of Animal Science, Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University)
  • Received : 2013.06.12
  • Accepted : 2013.09.14
  • Published : 2014.01.01

Abstract

The objective of this study was to investigate the correlation between cattle breeds and deposit of adipose tissues in different positions and the gene expressions of peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$), fatty acid synthase (FASN), and Acyl-CoA dehydrogenase (ACADM), which are associated with lipid metabolism and are valuable for understanding the physiology in fat depot and meat quality. Yanbian yellow cattle and Yan yellow cattle reared under the same conditions display different fat proportions in the carcass. To understand this difference, the expression of $PPAR{\gamma}$, FASN, and ACADM in different adipose tissues and longissimus dorsi muscle (LD) in these two breeds were analyzed using the Real-time quantitative polymerase chain reaction method (qRT-PCR). The result showed that $PPAR{\gamma}$ gene expression was significantly higher in adipose tissue than in LD in both breeds. $PPAR{\gamma}$ expression was also higher in abdominal fat, in perirenal fat than in the subcutaneous fat (p<0.05) in Yanbian yellow cattle, and was significantly higher in subcutaneous fat in Yan yellow cattle than that in Yanbian yellow cattle. On the other hand, FASN mRNA expression levels in subcutaneous fat and abdominal fat in Yan yellow cattle were significantly higher than that in Yanbian yellow cattle. Interestingly, ACADM gene shows greater fold changes in LD than in adipose tissues in Yan yellow cattle. Furthermore, the expressions of these three genes in lung, colon, kidney, liver and heart of Yanbian yellow cattle and Yan yellow cattle were also investigated. The results showed that the highest expression levels of $PPAR{\gamma}$ and FASN genes were detected in the lung in both breeds. The expression of ACADM gene in kidney and liver were higher than that in other organs in Yanbian yellow cattle, the comparison was not statistically significant in Yan yellow cattle.

Keywords

References

  1. Aeberhard, K., R. M. Bruckmaier, U. Kuepfer, and J. W. Blum. 2001. Milk yield and composition, nutrition, body conformation traits, body condition scores, fertility and diseases in high-yielding dairy cows-Part 1. J. Vet. Med. A Physiol. Pathol. Clin. Med. 48:97-110. https://doi.org/10.1046/j.1439-0442.2001.00292.x
  2. Barak, Y., M. C. Nelson, E. S. Ong, Y. Z. Jones, P. Ruiz-Lozano, K. R. Chien, A. Koder, and R. M. Evans. 1999. PPAR gamma is required for placental, cardiac, and adipose tissue development. Molecular Cell 4:585-59. https://doi.org/10.1016/S1097-2765(00)80209-9
  3. Berndt, J., P. Kovacs, K. Ruschke, N. Kloting, M. Fasshauer, M. R. Schon, A. Korner, M. Stumvoll, and M. Bluher. 2007. Fatty acid synthase gene expression in human adipose tissue: association with obesity and type 2 diabetes. Diabetologia 50:1472-1480. https://doi.org/10.1007/s00125-007-0689-x
  4. Bluher, M., M. D. Michael, O. D. Peroni, K. Ueki, N. Carter, B. B. Kahn, and C. R. Kahn. 2002. Adipose tissue selective insulin receptor knockout protects against obesity and obesity-related glucose intolerance. Dev. Cell 3:25-38. https://doi.org/10.1016/S1534-5807(02)00199-5
  5. Bluher, M., M. E. Patti, S. Gesta, B. B. Kahn, and C. R. Kahn. 2004. Intrinsic heterogeneity in adipose tissue of fat-specific insulin receptor knock-out mice is associated with differences in patterns of gene expression. J. Biol. Chem. 279:31891-31901. https://doi.org/10.1074/jbc.M404569200
  6. Chakravarty, B., Z. Gu, S. S. Chirala, S. J. Wakil, and F. A. Quiocho. 2004. Human fatty acid synthase: structure and substrate selectivity of the thioesterase domain. Proc. Natl. Acad. Sci. USA. 101:15567-15572. https://doi.org/10.1073/pnas.0406901101
  7. Chawla, A., J. J. Repa, R. M. Evans, and D. J. Mangelsdorf. 2001. Nuclear receptors and lipid physiology: opening the X-files. Science 294:1866-1870. https://doi.org/10.1126/science.294.5548.1866
  8. Diraison, F., E. Dusserre, H. Vidal, M. Sothier, and M. Beylot. 2002. Increased hepatic lipogenesis but decreased expression of lipogenic gene in adipose tissue in human obesity. Am. J. Physiol. Endocrinol. Metab. 282:E46-51.
  9. Escher, P., O. Braissant, S. Basu-Modak, L. Michalik, W. Wahli, and B. Desvergne. 2001. Rat PPARs: Quantitative analysis in adult rat tissues and regulation in fasting and refeeding. Endocrinology 142:4195-4202. https://doi.org/10.1210/endo.142.10.8458
  10. Escher, P, and W. Wahli. 2000. Peroxisome proliferator-activated receptors: insight into multiple cellular functions. Mutat. Res. (Fundamental and Molecular Mechanisms of Mutagenesis) 448:121-138. https://doi.org/10.1016/S0027-5107(99)00231-6
  11. Greco, D., A. Kotronen, J. Westerbacka, O. Puig, P. Arkkila, T. Kiviluoto, S. Laitinen, M. Kolak, R. M. Fisher, A. Hamsten, P. Auvinen, and H. Yki-Jarvinen. 2008. Gene expression in human NAFLD. Am. J. Physiol. Gastrointest. Liver Physiol. 294: G1281-G1287. https://doi.org/10.1152/ajpgi.00074.2008
  12. Grindflek, E., H. Sundvold, H. Klungland, and S. Lien. 1998. Characterisation of porcine peroxisome proliferator-activated receptors gamma 1 and gamma 2: detection of breed and age differences in gene expression. Biochem. Biophys. Res. Commun. 249:713-718. https://doi.org/10.1006/bbrc.1998.9212
  13. Havel, P. J. 2002. Control of energy homeostasis and insulin action by adipocyte hormones: leptin, acylation stimulating protein, and adiponectin. Curr. Opin. Lipidol. 13:51-59. https://doi.org/10.1097/00041433-200202000-00008
  14. Hevener, A. L., W. He, Y. Barak, J. Le, G. Bandyopadhyay, P. Olson, J. Wilkes, R. M. Evans, and J. Olefsky. 2003. Muscle-specific Pparg deletion causes insulin resistance. Nat. Med. 9:1491-1497. https://doi.org/10.1038/nm956
  15. Houten, S. M. and R. J. Wanders 2010. A general introduction to the biochemistry of mitochondrial fatty acid beta-oxidation. J. Inherit. Metab. Dis. 33:469-477. https://doi.org/10.1007/s10545-010-9061-2
  16. Illig, T., C. Gieger, G. Zhai, W. Romisch-Margl, R. Wang-Sattler, C. Prehn, E. Altmaier, G. Kastenmuller, B. S. Kato, H. W. Mewes, T. Meitinger, M. H. de Angelis, F. Kronenberg, N. Soranzo, H. E. Wichmann, T. D. Spector, J. Adamski, and K. Suhre. 2010. A genome-wide perspective of genetic variation in human metabolism. Nat. Genet. 42:137-141. https://doi.org/10.1038/ng.507
  17. Kim, J. J. and R. Miura. 2004. Acyl-CoA dehydrogenases and acyl-CoA oxidases. Structural basis for mechanistic similarities and differences. Eur. J. Biochem. 271:483-493. https://doi.org/10.1046/j.1432-1033.2003.03948.x
  18. Kovacs, P., I. Harper, R. L. Hanson, A. M. Infante, C. Bogardus, P. A. Tataranni, and L. J. Baier. 2004. A novel missense substitution (Vall483Ile) in the fatty acid synthase gene (FAS) is associated with percentage of body fat and substrate oxidation rates in nondiabetic pima Indians. Diabetes 53:1915-1919. https://doi.org/10.2337/diabetes.53.7.1915
  19. Laborde, F. L., I. B. Mandell, J. J. Tosh, J. W. Wilton, and J. G. Buchanan-Smith. 2001. Breed effects on growth performance, carcass characteristics, fatty acid composition, and palatability attributes in finishing steers. J. Anim. Sci. 79:355-365.
  20. Lee, J. H., I. Yamamoto, J. S. Jeong, T. Nade, T. Arai, and N. Kimura. 2011. Relationship between adipose maturity and fatty acid composition in various adipose tissues of Japanese Black, Holstein and Crossbred (F1) steers. Anim. Sci. J. 82:689-697. https://doi.org/10.1111/j.1740-0929.2011.00893.x
  21. Livak, K. J. and T. D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods 25:402-408. https://doi.org/10.1006/meth.2001.1262
  22. May, S. G., C. A. Sturdivant, D. K. Lunt, R. K. Miller, and S. B. Smith. 1993. Comparison of sensory characteristics and fatty acid composition between Wagyu crossbred and Angus steers. Meat Sci. 35:289-298. https://doi.org/10.1016/0309-1740(93)90034-F
  23. Norman, R. A., P. A. Tataranni, R. Pratley, D. B. Thompson, R. L. Hanson, M. Prochazka, L. Baier, M. G. Ehm, H. Sakul, T. Foroud, W. T. Garvey, D. Burns, W. C. Knowler, P. H. Bennett, C. Bogardus, and E. Ravussin. 1998. Autosomal genomic scan for loci linked to obesity and energy metabolism in Pima Indians. Am. J. Hum. Genet. 62:659-668. https://doi.org/10.1086/301758
  24. Rajala, M. W. and P. E. Scherer. 2003. Minireview: The adipocyte - At the crossroads of energy homeostasis, inflammation, and atherosclerosis. Endocrinology 144:3765-3773. https://doi.org/10.1210/en.2003-0580
  25. Rosen, E. D., C. J. Walkey, P. Puigserver, and B. M. Spiegelman. 2000. Transcriptional regulation of adipogenesis. Genes Dev. 14:1293-1307.
  26. Semenkovich, C. F., T. Coleman, and F. T. Fiedorek, Jr. 1995. Human fatty acid synthase mRNA: tissue distribution, genetic mapping, and kinetics of decay after glucose deprivation. J. Lipid Res. 36: 1507-1521.
  27. Smith, E. H., C. Thomas, D. McHugh, D. Gavrilov, K. Raymond, P. Rinaldo, S. Tortorelli, D. Matern, W. E. Highsmith, and D. Oglesbee. 2010. Allelic diversity in MCAD deficiency: The biochemical classification of 54 variants identified during 5 years of ACADM sequencing. Mol. Genet. Metab. 100:241-250. https://doi.org/10.1016/j.ymgme.2010.04.001
  28. Sourdioux, M., C. Brevelet, Y. Delabrosse, and M. Douaire. 1999. Association of fatty acid synthase gene and malic enzyme gene polymorphisms with fatness in turkeys. Poult. Sci. 78:1651-1657. https://doi.org/10.1093/ps/78.12.1651
  29. Tontonoz, P. and B. M. Spiegelman. 2008. Fat and beyond: The diverse biology of PPAR gamma. Ann. Rev. Biochem. 77:289-312. https://doi.org/10.1146/annurev.biochem.77.061307.091829
  30. Turk, S. N. and S. B. Smith. 2009. Carcass fatty acid mapping. Meat Sci. 81:658-663. https://doi.org/10.1016/j.meatsci.2008.11.005
  31. Yokota, S., H. Sugita, A. Ardiyanti, N. Shoji, H. Nakajima, M. Hosono, Y. Otomo, Y. Suda, K. Katoh, and K. Suzuki. 2012. Contributions of FASN and SCD gene polymorphisms on fatty acid composition in muscle from Japanese Black cattle. Anim. Genet. 43:790-792. https://doi.org/10.1111/j.1365-2052.2012.02331.x
  32. Zimin, A. V., A. L. Delcher, L. Florea, D. R. Kelley, M. C. Schatz, D. Puiu, F. Hanrahan, G. Pertea, C. P. Van Tassell, T. S. Sonstegard, G. Marcais, M. Roberts, P. Subramanian, J. A. Yorke, and S. L. Salzberg. 2009. A whole-genome assembly of the domestic cow, Bos taurus. Genome Biol. 10:R42. https://doi.org/10.1186/gb-2009-10-4-r42

Cited by

  1. Significantly Affect Weaning Growth Traits of Nanyang Cattle vol.29, pp.1, 2018, https://doi.org/10.1080/10495398.2017.1304950
  2. The effect of lipid metabolism-related genes on intramuscular fat content and fatty acid composition in multiple muscles vol.58, pp.11, 2018, https://doi.org/10.1071/AN16292
  3. Longissimus dorsi muscle transcriptomic analysis of Yunling and Chinese simmental cattle differing in intramuscular fat content and fatty acid composition vol.61, pp.8, 2018, https://doi.org/10.1139/gen-2017-0164
  4. Expression analyses of candidate genes related to meat quality traits in squabs from two breeds of meat-type pigeon vol.102, pp.3, 2018, https://doi.org/10.1111/jpn.12869
  5. Epigenome-wide DNA methylation profiling of periprostatic adipose tissue in prostate cancer patients with excess adiposity—a pilot study vol.10, pp.1, 2018, https://doi.org/10.1186/s13148-018-0490-3
  6. System-level Design Method for Control Systems with Hardware-implemented Interrupt Handler vol.23, pp.5, 2014, https://doi.org/10.2197/ipsjjip.23.532
  7. Variation in the Fatty Acid Synthase Gene (FASN) and Its Association with Milk Traits in Gannan Yaks vol.9, pp.9, 2014, https://doi.org/10.3390/ani9090613
  8. Use of pregnancy‐associated plasma protein‐A during oocyte in vitro maturation increases IGF‐1 and affects the transcriptional profile of cumulus cells and embryos from Nelore cows vol.86, pp.11, 2019, https://doi.org/10.1002/mrd.23259
  9. The effect of miR‐10b on growth hormone in pituitary cells of Yanbian yellow cattle by somatostatin receptor 2 vol.91, pp.1, 2014, https://doi.org/10.1111/asj.13420
  10. Whole Genome Scan and Selection Signatures for Climate Adaption in Yanbian Cattle vol.11, pp.None, 2020, https://doi.org/10.3389/fgene.2020.00094
  11. The effect of miR-6523a on growth hormone secretion in pituitary cells of Yanbian yellow cattle vol.100, pp.4, 2014, https://doi.org/10.1139/cjas-2019-0168
  12. Tissue-specific fatty acid composition, cellularity, and gene expression in diverse cattle breeds vol.15, pp.1, 2014, https://doi.org/10.1016/j.animal.2020.100025
  13. The effect of miR-93 on GH secretion in pituitary cells of Yanbian yellow cattle vol.32, pp.3, 2014, https://doi.org/10.1080/10495398.2019.1687092