DOI QR코드

DOI QR Code

Preparation of Nb2O5-Graphene Nanocomposites and Their Application in Photocatalytic Degradation of Organic Dyes

Nb2O5-Graphene나노복합체의 제조 및 유기염료 광촉매 분해반응의 응용성에 관한 연구

  • Received : 2014.11.03
  • Accepted : 2014.12.04
  • Published : 2014.12.31

Abstract

Niobium pentoxide ($Nb_2O_5$) nanoparticles were synthesized using niobium (V) chloride and pluronic F108NF as the precursor and templating agent, respectively. The $Nb_2O_5$-graphene nanocomposites were placed in an electric furnace at $700^{\circ}C$ and calcined under Ar atmosphere for 2 h. The morphology, crystallinity, and photocatalytic degradation activity of the samples were characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscopy, and UV-vis spectroscopy. The $Nb_2O_5$-graphene nanocomposites acted as a photocatalyst in the photocatalytic degradation of organic dyes under 254 nm UV light; the organic dyes used were methylene blue (MB), methyl orange (MO), rhodamine B (RhB), and brilliant green (BG). The photocatalytic degradation kinetics for the aforesaid dyes were determined in the presence of the $Nb_2O_5$-graphene nanocomposites.

Niobium pentoxide ($Nb_2O_5$) 나노입자는 niobium (V) chloride 와 pluronic F108NF를 전구체와 주형제로 사용하여 합성하였다. $Nb_2O_5$-graphene나노복합체는 아르곤 가스 분위기 전기로 조건에서 2시간 동안 $700^{\circ}C$로 가열하였다. 시료의 결정화도, 결정형태, 광촉매 분해 반응성은 X-ray diffraction, scanning electron microscopy, transmission electron microscopy, UV-vis spectroscopy를 사용하여 측정하였다. $Nb_2O_5$-graphene나노복합체는 254 nm의 자외선 조건에서 유기염료 광촉매 분해 반응의 광촉매로 사용되었다. 유기염료는 methylene blue (MB), methyl orange (MO), rhodamine B (RhB), brilliant green (BG)이 사용되었다. 또한 $Nb_2O_5$-graphene나노복합체를 사용하여 유기염료 광촉매 분해 반응의 반응 속도를 결정하였다.

Keywords

References

  1. B. Varghese, S. C. Haur and C. T. Lim, "$Nb_2O_5$ Nanowires as Efficient Electron Field Emitters", J. Phys. Chem. C., 112, 10008 (2008). https://doi.org/10.1021/jp800611m
  2. F. Hashemzadeh, R. Rahimi and A. Ghaffarinejad, "Mesoporous Nanostructures of $Nb_2O_5$ Obtained by an EISA Route for the Treatment of Malachite Green Dye-Contaminated Aqueous Solution under UV and Visible Light Irradiation", Ceram. Int., 40, 9817 (2014). https://doi.org/10.1016/j.ceramint.2014.02.072
  3. A. L. Viet, M. V. Reddy, R. Jose, B. V. R. Chowdari and S. Ramakrishna, "Nanostructured $Nb_2O_5$ Polymorphs by Electrospinning for Rechargeable Lithium Batteries", J. Phys. Chem. C, 114, 664 (2010). https://doi.org/10.1021/jp9088589
  4. A. G. S. Prado, L. B. Bolzon, C. P. Pedroso, A. O. Moura and L. L. Costa, "$Nb_2O_5$ as Efficient and Recyclable Photocatalyst for Indigo Carmine Degradation", Appl. Catal. B-Environ., 82, 219 (2008). https://doi.org/10.1016/j.apcatb.2008.01.024
  5. S. I. Ito, T. Fujimori, K. Nagashima, K. Yuzaki and K. Kunimori, "Strong Rhodium-Niobia Interaction in Rh/$Nb_2O_5$, $Nb_2O_5$-Rh/$SiO_2$ and $RhNbO_4$/ $SiO_2$ Catalysts: Application to Selective CO Oxidation and CO Hydrogenation", Catal.Today, 57, 247 (2000). https://doi.org/10.1016/S0920-5861(99)00333-8
  6. D. Zander, L. Lyubenova, U. Köster, M. Dornheim, F. A. Zinsou and T. Klassen, "The Catalytic Effect of $Nb_2O_5$ on the Electrochemical Hydrogenation of Nanocrystalline Magnesium", J. Alloys Compd., 413, 298 (2006). https://doi.org/10.1016/j.jallcom.2005.06.063
  7. Z. J. Yang, Y. F. Li, Q. B. Wu, N. Ren, Y. H. Zhang, Z. P.Liu and Y. Tang, "Layered Niobic Acid with Self-Exfoliatable Nanosheets and Adjustable Acidity for Catalytic Hydration of Ethylene Oxide", J. Catal., 280, 247 (2011). https://doi.org/10.1016/j.jcat.2011.03.026
  8. N. Kumagai, K. Tanno, T. Nakajima and N. Watanabe, "Structural Changes of $Nb_2O_5$ and $V_2O_5$ as Rechargeable Cathodes for Lithium Battery", Electrochim. Acta, 28, 17 (1983). https://doi.org/10.1016/0013-4686(83)85081-6
  9. F. D. Franco, P. Bocchetta, M. Santamaria and F. D. Quarto, "Light Induced Electropolymerization of Poly (3,4-ethylenedioxythiophene) on Niobium Oxide", Electrochim. Acta, 56, 737 (2010). https://doi.org/10.1016/j.electacta.2010.09.062
  10. S. Furukawa, T. Shishido, K. Teramura and T. Tanaka, "Reaction Mechanism of Selective Photooxidation of Hydrocarbons over $Nb_2O_5$", J. Phys. Chem. C, 115, 19320 (2011). https://doi.org/10.1021/jp207316f
  11. T. Shishido, T. Miyatake, K. Teramura, Y. Hitomi, H. Yamashita and T. Tanaka, "Mechanism of Photooxidation of Alcohol over $Nb_2O_5$", J. Phys. Chem. C, 113, 18713 (2009). https://doi.org/10.1021/jp901603p
  12. I. Nowak and M. Ziolek, "Niobium Compounds: Preparation, Characterization, and Application in Heterogeneous Catalysis", Chem. Rev., 99, 3603 (1999). https://doi.org/10.1021/cr9800208
  13. Y. Gogotsi, "Controlling Graphene Properties Through Chemistry", J. Phys. Chem. Lett., 2, 2509 (2011). https://doi.org/10.1021/jz201145a
  14. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang,S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, "Electric Field Effect in Atomically Thin Carbon Films", Science, 306, 666 (2004). https://doi.org/10.1126/science.1102896
  15. A. K. Geim and K. S. Novoselov, "The Rise of Graphene", Nat. Mater., 6, 183 (2007). https://doi.org/10.1038/nmat1849
  16. A. Dato, Z. Lee, K. J. Jeon, R. Erni, V. Radmilovic, T. J. Richardson and M. Frenklach, "Clean and Highly Ordered Graphene Synthesized in the Gas Phase", Chem. Commun., 152, 6095 (2009).
  17. B. Mortazavi, A. Rajabpour, S. Ahzi, Y. Remonda and S. M. V. Allaei, "Nitrogen Doping and Curvature Effects on Thermal Conductivity of Graphene: A Non-Equilibrium Molecular Dynamics study", Solid State Commun., 152, 261 (2012). https://doi.org/10.1016/j.ssc.2011.11.035
  18. B. H. Cho and W. B. Ko, "Preparation of Graphene-$ZrO_2$ Nanocomposites by Heat Treatment and Photocatalytic Degradation of Organic Dyes, J. Nanosci. Nanotechnol., 13, 7625 (2013). https://doi.org/10.1166/jnn.2013.7819
  19. Z. Xu, Y. Zhang, X. Qian, J. Shi, L. Chen, B. Li, J. Niu and L. Liu, "One Step Synthesis of Polyacrylamide Functionalized Graphene and Its Application in Pb(II) Removal", Appl. Surf. Sci., 316, 308 (2014). https://doi.org/10.1016/j.apsusc.2014.07.155
  20. U. G. Akpan and B. H. Hameed, "Parameters Affecting the Photocatalytic Degradation of Dyes Using $TiO_2$-Based Photocatalysts: A review", J. Hazard. Mater., 170, 520 (2009). https://doi.org/10.1016/j.jhazmat.2009.05.039
  21. K. Ouyang, S. Xie and X. O. Ma, "Photocatalytic activity of $TiO_2$ supported on multi-walled carbon nanotubes under simulated solar irradiation", Ceram. Int., 39, 7531 (2013). https://doi.org/10.1016/j.ceramint.2013.03.004
  22. S. Srivastava, R. Sinha and D. Roy, "Toxicological Effects of Malachite Green", Aquat. Toxicol., 66, 319 (2004). https://doi.org/10.1016/j.aquatox.2003.09.008
  23. C. Berberidou, I. Poulios, N. Xekoukoulotakis and D. Mantzavinos, "Sonolytic, Photocatalytic and Sonophotocatalytic Degradation of Malachite Green in Aqueous Solutions", Appl. Catal. B-Environ., 74, 63 (2007). https://doi.org/10.1016/j.apcatb.2007.01.013
  24. C. Liu, Y. Yang, Q. Wanga, M. Kim, Q. Zhu, D. Li and Z. Zhang, "Photocatalytic Degradation of Waste Activated Sludge Using a Circulating Bed Photocatalytic Reactor for Improving Biohydrogen Production", Bioresour. Technol., 125, 30 (2012). https://doi.org/10.1016/j.biortech.2012.08.139
  25. S. K. Hong, J. H. Lee and W. B. Ko, "Synthesis of [60] Fullerene-ZnO Nanocomposite under Electric Furnace and Photocatalytic Degradation of Organic Dyes", J. Nanosci. Nanotechnol., 11, 6049 (2011). https://doi.org/10.1166/jnn.2011.4374
  26. J. Liu, D. Xue and K. Li, "Single-crystalline nanoporous $Nb_2O_5$ nanotubes", Nanoscale Res. Lett., 6, 138 (2011). https://doi.org/10.1186/1556-276X-6-138
  27. S. Danwittayakula, M. Jaisaib and J. Duttab, "Efficient solar photocatalytic degradation of textile wastewater usingZnO/ZTO composites", Appl. Catal. B-Environ., 163, 1 (2015). https://doi.org/10.1016/j.apcatb.2014.07.042