DOI QR코드

DOI QR Code

Lipid Composition of Korean Rapeseed (Brassica napus L.) Cultivar and Antioxidant Capacity of Phenolic Extract

국내산 유채 종자의 품종별 지방 조성 및 페놀 추출물의 항산화 활성

  • Lee, A-Young (Department of Food and Nutrition, Daegu University) ;
  • Hong, Soon-Taek (Department of Food Science and Technology, Chungnam National University) ;
  • Jang, Young-Seok (National Institute of Crop Science, Rural Development Administration) ;
  • Lee, Jeung-Hee (Department of Food and Nutrition, Daegu University)
  • Received : 2014.09.05
  • Accepted : 2014.11.03
  • Published : 2014.12.31

Abstract

This study investigated lipid profiles and antioxidant capacities of seven Korean rapeseed cultivars (Naehan, Tamla, Mokpo111, Yeongsan, Tammi, Hanla, and Mokpo68). The rapeseeds contained 29.3~33.2% of extracted lipid and major fatty acids were oleic, linoleic, and linolenic acids. The ratio of omega-6/omega-3 fatty acids was 2.20~3.68 with the highest in Hanla and lowest in Naehan. Glycolipid ranged from 0.21 g/100 g to 0.47 g/100 g. Phospholipid content was 0.55~1.15 g/100 g with the highest in Tammi and the lowest in Mokpo68, and the most common phospholipid was phosphatidylcholine. Tocopherol content was 9.45~15.11 mg/100 g in the order of ${\gamma}$ > ${\alpha}$ > ${\beta}$ > ${\delta}$-tocopherol, and Naehan contained the highest amount of tocopherols (P<0.05). Total phenol content (TPC) of rapeseed was 314.64~577.08 mg SAE/100 g. Tamla contained the highest TPC, and showed the highest antioxidant activity determined by 1,1-diphenyl-2-picrylhydrazyl free radical scavenging capacity and ferric reducing antioxidant power.

본 연구는 국내산 유채 종자 내한, 탐라, 목포111호, 영산, 탐미, 한라와 목포68호의 품종별 지방산 조성, 인지질, 당지질, 토코페롤 함량을 조사하고, 유채 종자를 탈지한 후 crude phenolic compound를 추출하여 총 페놀 함량과 항산화 활성을 분석하였다. 유채 종자의 조지방 함량은 29.3~33.2%였고, 품종들 간의 유의적인 차이는 없는 것으로 나타났다. 주요 지방산은 oleic(n-9), linoleic(n-6)과 ${\alpha}$-linolenic acid(n-3)였으며, n-6/n-3 지방산의 비율은 2.20~3.68이고 이 중 내한종이 가장 낮고 한라종이 가장 높았다. Neutral lipids 함량은 내한종과 탐라종, 인지질 함량은 탐미종에서 가장 높고, 소량 함유된 당지질은 내한, 탐라, 한라와 목포68호 간 함량 차이가 없었으며 목포111호에 가장 낮게 함유되었다. 토코페놀 함량 수준은 ${\gamma}$ > ${\alpha}$ > ${\beta}$ > ${\delta}$-tocopherol이며, 내한종의 총 tocopherol 함량이 가장 높고 다음으로 탐라, 목포111의 순이었으며 영산, 탐미, 한라 목포68호는 유의적인 함량 차이를 보이지 않았다. 품종별 총 페놀 함량은 탐라> 영산> 탐미, 한라, 내한> 목포68호, 목포111호의 순으로 나타났으며, 탐라종의 DPPH 라디칼 소거능과 FRAP value가 가장 높아 7개의 품종 중 항산화 활성이 가장 높은 것으로 확인되었다. 탈지 후의 유채박에 함유된 phenol compounds의 용매별 분획할 결과 30% ethanol fraction에 가장 많이 추출되며 이 fraction의 항산화 활성이 가장 높게 나타났다.

Keywords

References

  1. Statistics. Leading producing countries in rapeseed in 2012. Available at: http://www.statista.com/statistics/263937/vegetable-oils-global-consumption/ (accessed Sep 2014).
  2. Korea Rural Economic Institute. 2012. Food balance sheet. Seoul, Korea.
  3. Bell JM. 1984. Nutrients and toxicants in rapeseed meal: a review. J Anim Sci 58: 996-1010. https://doi.org/10.2527/jas1984.584996x
  4. Lajolo FM, Lanfer Marquez UM, Filisetti-Cozzi TMCC, Ian McGregor D. 1981. Chemical composition and toxic compounds in rapeseed (Brassica napus, L.) cultivars grown in Brazil. J Agric Food Chem 39: 1933-1937.
  5. Lin L, Allemekinders H, Dansby A, Campbell L, Durance-Tod S, Berger A, Jones PJ. 2013. Evidence of health benefits of canola oil. Nutr Rev 71: 370-385. https://doi.org/10.1111/nure.12033
  6. Simopoulos AP. 2002. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed Pharmacother 56: 365-379. https://doi.org/10.1016/S0753-3322(02)00253-6
  7. Lee HJ, Jang HD, Lee KW, Lee HJ, Kang NJ. 2011. Functional food. Soohaksa, Seoul, Korea. p 104-107.
  8. Maeda N, Matsubara K, Yoshida H, Mizushina Y. 2011. Anti-cancer effect of spinach glycoglycerolipids as angiogenesis inhibitors based on the selective inhibition of DNA polymerase activity. Mini Rev Med Chem 11: 32-38. https://doi.org/10.2174/138955711793564042
  9. Shiota A, Hada T, Baba T, Sato M, Yamanaka-Okumura H, Yamamoto H, Taketani Y, Takeda E. 2010. Protective effects of glycoglycerolipids extracted from spinach on 5-fluorouracil induced intestinal mucosal injury. J Med Invest 57: 314-320. https://doi.org/10.2152/jmi.57.314
  10. Amar S, Becker HC, Möllers C. 2009. Genetic variation in phytosterol content of winter rapeseed (Brassica napus L.) and development of NIRS calibration equations. Plant Breed 128: 78-83. https://doi.org/10.1111/j.1439-0523.2008.01531.x
  11. Piao X, Choi SY, Kin YH, Lee YH, Kim KS, Jang YS, So YS, Kim HS. 2013. Variety$\times$location interaction on oil, fatty acids, tocopherols and phytosterols in Korean rapeseed (Brassica napus L.). Plant Breed Biotech 1: 91-101. https://doi.org/10.9787/PBB.2013.1.1.091
  12. Khattab R, Eskin M, Aliani M, Thiyam U. 2010. Determination of sinapic acid derivatives in canola extracts using high-performance liquid chromatography. J Am Oil Chem Soc 87: 147-155. https://doi.org/10.1007/s11746-009-1486-0
  13. Kim H, Lee H, Go YS, Roh KH, Lee YH, Jang YS, Suh MC. 2010. Development of herbicide-tolerant Korean rapeseed (Brassica napus L.) cultivars. J Plant Biotechnol 37: 319-326. https://doi.org/10.5010/JPB.2010.37.3.319
  14. Lee YH, Kim KS, Jang YS, Cho HJ, Choi HG, Jang YG, Kang DS, Kang HY, Suh SJ. 2011. A new F1 hybrid variety of rapeseed, 'Suan' with early maturing and high oleic acid. Kor J Breed Sci 43: 172-176.
  15. Barthet VJ. 2008. (n-7) and (n-9) cis-monounsaturated fatty acid contents of 12 Brassica species. Phytochemistry 69: 411-417. https://doi.org/10.1016/j.phytochem.2007.08.016
  16. Mukherjee KD, Kiewitt I. 1980. Formation of (n-9) and (n-7) cis-monounsaturated fatty acids in seeds of higher plants. Planta 149: 461-463. https://doi.org/10.1007/BF00385748
  17. Zadernowski R, Sosulski F. 1978. Composition of total lipids in rapeseed. J Am Oil Chem Soc 55: 870-872. https://doi.org/10.1007/BF02671409
  18. Przybylski R, Eskin NAM. 1991. Phospholipid composition of canola oils during the early stages of processing as measured by TLC with flame ionization detector. J Am Oil Chem Soc 68: 241-245. https://doi.org/10.1007/BF02657617
  19. Sosulski F, Zadernowski R, Babuchowski K. 1981. Composition of polar lipids in rapeseed. J Am Oil Chem Soc 58: 561-564. https://doi.org/10.1007/BF02541595
  20. Seker M, Gül MK, Ipek M, Toplu C, Kaleci N. 2008. Screening and comparing tocopherols in the rapeseed (Brassica napus L.) and olive (Olea europaea L.) varieties using highperformance liquid chromatography. Int J Food Sci Nutr 59: 483-490. https://doi.org/10.1080/09637480701539484
  21. Gliszczynska-Swiglo A, Sikorska E, Khmelinskii I, Sikorski M. 2007. Tocopherol content in edible plant oils. Pol J Food Nutr Sci 57: 157-161.
  22. Kozlowska H, Naczk M, Shahidi F, Zadernowski R. 1991. Phenolic acids and tannins in rapeseed and canola. In Canola and Rapeseed: Production, Chemistry, Nutrition and Processing Technology. Shahidi F, ed. AVI Book, New York, NY, USA. p 193-210.
  23. Vuorela S, Meyer AS, Heinonen M. 2003. Quantitative analysis of the main phenolics in rapeseed meal and oils processed differently using enzymatic hydrolysis and HPLC. Eur Food Res Technol 217: 517-523. https://doi.org/10.1007/s00217-003-0811-3
  24. Malgorzata NK, Aleksander S. 2010. Changes of phenolic content in rapeseed during preliminary drying. J Oilseed Brassica 1: 33-38.
  25. Quio H, Classen HL. 2003. Nutritional and physiological effects of rapeseed meal sinapine in broiler chickens and its metabolism in the digestive tract. J Sci Food Agric 83: 1430-1438. https://doi.org/10.1002/jsfa.1559
  26. Naczk M, Amarowicz R, Sullivan A, Shahidi F. 1998. Current research development on polyphenolics of rapeseed/canola: a review. Food Chem 62: 489-502. https://doi.org/10.1016/S0308-8146(97)00198-2

Cited by

  1. 유채꽃 가공유형별 플라보노이드 조성 및 함량 변화 vol.36, pp.1, 2014, https://doi.org/10.5338/kjea.2017.36.1.04
  2. Antioxidative capacity of hydrolyzed rapeseed cake extract and oxidative stability of fish oil-in-water emulsion added with the extract vol.24, pp.4, 2014, https://doi.org/10.11002/kjfp.2017.24.4.529