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Abstract—Macro-model of magnetic tunnel junction 
(MTJ) for spin transfer torque magnetic random 
access memory (STT-MRAM) has been developed. 
The macro-model can describe the dynamic behavior 
such as the state change of MTJ as a function of the 
pulse width of driving current and voltage. The 
statistical behavior has been included in the model to 
represent the variation of the MTJ characteristic due 
to process variation. The macro-model has been 
developed in Verilog-A.    
 
Index Terms—Macro model, magnetic tunnel junction 
(MTJ), spin transfer torque magnetic random access 
memory (STT MTJ), verilog-A    

I. INTRODUCTION 

The spin transfer torque magnetic random access 
memory (STT-MRAM) is considered as a promising 
technology that can replace the conventional memory 
because of its fast access time, infinite endurance, low 
power consumption, good scalability and non-volatility 
[1-3]. The magnetic tunnel junction (MTJ) for STT-
MRAM consists of two ferromagnetic layers and a tunnel 
barrier between them. One ferromagnetic layer has fixed 
magnetization direction and is called pinned layer. The 
magnetization direction of the other ferromagnetic layer 
(called free layer) can be switched by an external force. 
The magnetization direction of the free layer is used to 
represent either ‘1’ or ‘0’ [2]. If the magnetization 

directions of the pinned and free layers are parallel with 
each other, the MTJ has small resistance (RP). On the 
contrary, the MTJ has high resistance (RAP) when the 
magnetization directions of the pinned and free layers are 
anti-parallel. The ratio of the two resistance values RP 
and RAP is represented as tunnel magneto-resistance 
(TMR) which is defined as (RAP-RP)/RP. It is desired to 
have as large a TMR value as possible for better noise 
margin when MTJ is used as a memory cell. For both 
read and write operations, a certain amount of current has 
to flow through MTJ and therefore the stored information 
on the MTJ may be disturbed during read operation [4]. 
MTJ may be switched to and from the parallel (RP) and 
anti-parallel (RAP) states depending on the amount of 
current flowing through it [2, 11]. The amount of current 
required to switch the MTJ state may change by the 
process variation, temperature, and bias level [5]. As 
shown in Fig. 1, the macro-model of MTJ has to be 
capable of modeling all the characteristics explained 
above in order to simulate the behavior of STT-MRAM.  

The MTJ model presented in [1] can describe only the 
dynamic behavior but does not model the varying 
characteristic due to the process variation. Therefore it 
cannot predict the read and write failure due to the 
process variation. The MTJ model in [10] includes the 
effect of the process variation but does not consider the 
effect of the input stimulus waveform. Therefore it 
cannot fully predict the read disturbance for various 
environments.  

In this paper, a macro-model of MTJ is described 
which can represent its dynamic behavior. The macro-
model is developed in Verilog-A. Section II explains the 
basics of the switching of MTJ state and Section III 
describes how the dynamic behavior is modeled. The 
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simulation results with the developed macro-model are 
shown in Section IV and finally the paper is concluded in 
Section V. 

II. SWITCHING TIME OF MTJ 

In order to switch the state of MTJ, a certain amount 
of current IMTJ has to flow through it while the current 
direction differs for anti-parallelizing and parallelizing as 
shown in Fig. 2. Another factor that determines the 
switching of the MTJ state is how long the switching 
current IMTJ flows through MTJ. Let’s define the 
minimum required duration of the switching current flow 
for the switching of the MTJ state as the switching time 
τSW. The switching time τSW of MTJ is inversely 
proportional to the switching current IMTJ [2, 6].  

There are two operation regions for MTJ depending on 
the switching current magnitude IMTJ [7-9]. The threshold 
current IC0 defining the operation region of MTJ is given 
as [4]; 

 ( ) ( ) ( )0 1 2 2C K SI m H H M eh a p= × × × + + × h   (1) 
 

where h is the spin polarization factor, α is the magnetic 
damping constant, m is the magnetization of free layer, H 
is the applied magnetic field, HK is the effective 
anisotropy field, MS is the saturation magnetization level, 
e is the charge of an electron, and h  is the Planck 
constant.  

The spin polarization factor h and the magnetization 
of free layer m are given as; 
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where VFREE is the volume of free layer.  
When IMTJ > IC0, MTJ is in the precession region where 

the average switching time <τSW> is expressed as [8]; 
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where the Euler’s constant C is about 0.577, z=ΔE/kBT is 
the thermal stability factor, ΔE=μ0MSVFREEHK/2 is the 
energy barrier height, kB is the Boltzmann constant, T is 
the temperature, μB is the Bohr magneton, PPIN and PFREE 
are the tunneling spin polarization of the pinned layer 
and free layer, respectively.  

When IMTJ < IC0, MTJ is in the thermal activation 
region and the thermal activation switching time is given 
as [9]; 
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where τ0 is the attempt period of nano-magnet. 

III. DYNAMIC BEHAVIOR MODELING OF MTJ  

In a conventional MTJ model, the switching time of 
MTJ state is modeled as a function of the bias current 
and voltage [10]. The pulse width of driving voltage and 
current, however, is not considered to model the 
switching time of MTJ state. Therefore, the read 

 

Fig. 1. Simulation of STT-MRAM with MTJ macro-model. 
 
 

 

                (a)                      (b) 

Fig. 2. Required current flow through MTJ for the switching (a) 
from the parallel state to the anti-parallel state, (b) from the 
anti-parallel state to the parallel state. 
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disturbance cannot be modeled, which may be a serious 
issue in a short pulse reading scheme.  

In the proposed MTJ model, the dynamic behavior of 
the switching of MTJ state is described by the algorithm 
shown in Fig. 3 which can take the pulse with of driving 
voltage and current into account. The resistance of MTJ 
is determined by bias voltage and current and the current 
state of MTJ. 

Initially, the threshold current IC0 is calculated with the 
parameters shown in Table 1 by the equation in (1). Then, 
the bias current IMTJ of MTJ is judged whether it can 
switch the state of MTJ considering the current state of 
MTJ and the direction of the bias current IMTJ. If IMTJ is 
negative when the MTJ is currently in the anti-parallel 
state or if IMTJ is positive when the MTJ is currently in 
the parallel state, the MTJ state cannot be changed. 
Therefore, the remaining steps are skipped in the 
algorithm for fast simulation if it is determined that the 
MTJ state cannot be changed. If the flow of IMTJ is in the 
correct direction so it can change the MTJ state, the 
magnitude of IMTJ is compared with IC0. If IMTJ is larger 
than IC0, the switching time is τSW is calculated by Eq. (4) 

and if IMTJ is smaller than IC0, τSW is calculated by Eq. (5). 
The pulse width τPW of the driving current is increased at 

every step of simulation as [ ] [ ]1PW PWN Nt t t= - + D  

and compared with the switching time τSW. When τPW 
becomes larger than τSW, the state of MTJ is changed and 
the variables are all initialized.  

In order to model the stochastic behavior of MTJ, the 
random distribution function of Verilog-A has been 
utilized. The oxide barrier height tox, the volume of free 
layer VFREE, and TMR can be randomly changed by the 
random distribution function of Verilog-A. As can be 
seen in the Eqs. (4) and (5), the switching time τSW varies 
with those stochastic parameters, especially VFREE [9].  

IV. RESULTS 

In order to verify the above explained MTJ model, 
various simulations have been performed with the 
parameters in Table 1 [10].  

The hysteresis characteristic of MTJ is confirmed with 
the DC simulation. Fig. 4 shows the resistance and 
current of MTJ as a function of bias voltage VMTJ. The  

 

Fig. 3. Proposed algorithm for the modeling of the dynamic 
behavior of MTJ state switching. 
 

Table 1. Parameters 
Parameter Description Default Value 

HK Anisotropy field 1433 Oe 
MS Saturation magnetization 15800 Oe 
α Magnetic damping constant 0.027 
tox Oxide barrier height 0.85 nm 

TMR(0) TMR ratio with 0VMTJ 70% 
VFREE Volume of Free layer area×1.3 nm 
area MTJ surface 40 nm×40 nm×π/4 

PPIN=PFREE=P Tunneling spin polarization 0.52 
 

 

Fig. 4. DC simulation for hysteresis characteristic. 
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hysteresis characteristic can be seen in the figure.  
The dynamic behavior of MTJ model has been verified 

by the transient simulation as shown in Fig. 5. Fig. 5(a) 
shows the change of MTJ state as a function of the pulse 
width of driving current. In Fig. 5(b), it can be seen that 
the read disturbance can happen when the read current is 
unacceptably large.  

To see the read and write operation of MTJ 
considering the dynamic and stochastic behavior, the test 
circuit shown in Fig. 6(a) has been built. The nMOS 
transistor Ma is the access transistor of MTJ memory cell 
while the transistors M1, M2, M3, M4 are read biasing and 
write driving transistors. If BWR0 and WR1 are LOW and 
BWR1 and WR0 are HIGH, the current IMTJ can switch the 
MTJ state into the parallel state. When the driving 
voltage VMTJ and therefore driving current is applied for a 
long time, the MTJ state is switched while the MTJ state 
does not change for a short driving pulse. The random 
variation of the switching time can be seen in the figure.  

V. CONCLUSIONS 

A macro-model of MTJ has been developed in 
Verilog-A which can represent its dynamic and 
stochastic behavior. The variation of the switching time 
of MTJ state for different driving pulse width can be 
modeled in the proposed macro-model. The stochastic 
behavior is also included in the model to see the random 
variation of the MTJ characteristic. 
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Fig. 5. The dynamic behavior of MTJ model (a) the switching 
state depending on pulse width of current, (b) read disturbance 
depending on current magnitude. 
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Fig. 6. (a) Test circuit for transient simulation, (b) simulation 
results. 
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