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Abstract—Using a simplified high-frequency small-
signal equivalent circuit model for BSIM3 MOSFET, 
the fully differential two-stage folded-cascode CMOS 
operational amplifier is analyzed to obtain its small-
signal voltage transfer function. As a result, the 
expressions for dc gain, five zero frequencies, five 
pole frequencies, unity-gain frequency, and phase 
margin are derived for op amp design using design 
equations. Then the analysis result is verified through 
the comparison with Spice simulations of both a high 
speed op amp and a low power op amp designed for 
the 0.13 μm CMOS process.   
 
Index Terms—Differential two-stage folded-cascode 
CMOS op amp, equation-based circuit design, high 
speed, low power, pole and zero frequency, small-
signal transfer function, frequency response, BSIM3.   

I. INTRODUCTION 

Operational amplifiers have been used in a variety of 
analog circuits such as instrumentation amplifiers, 
continuous-time or switched-capacitor filters, analog-to-
digital or digital-to-analog converters, voltage regulators, 
and waveform generators. As a result, these op amps are 
essential analog circuit cells in many mixed-signal 
integrated circuits. In particular, the differential two-
stage folded-cascode op amp is needed to obtain high dc 
gain and wide output swing at low supply voltage in deep 
submicron technology [1]. For example, this op amp is 

used in high speed pipeline analog-to-digital converters 
and high frequency switched-capacitor filters [2-4]. 
Design of such high speed and high frequency 
complementary metal-oxide-semiconductor (CMOS) op 
amps becomes more critical in low power and low 
voltage circuits. In addition, transistor models have 
become more complex to characterize the physical 
behavior of submicron devices at high frequencies [5, 6]. 
Thus analog circuit design consumes a significant portion 
of total design time for mixed-signal integrated circuits. 
So this is called analog design bottleneck. In order to 
enhance design productivity, various computer-aided 
design (CAD) approaches have been presented for op 
amp design or analog circuit design [7-14]. 

The small-signal design equations for dc gain, pole 
and zero frequencies, unity-gain frequency, and phase 
margin of op amps are required in manual design as well 
as equation-based and mixed CAD. So the pole and zero 
frequencies can be designed to achieve the stable 
transient response of operational amplifiers. Moreover, 
pole-zero doublets in the passband should be controlled 
through the design equations. Otherwise these doublets 
may seriously deteriorate the settling time. Such pole-
zero control is an important advantage of equation-based 
design compared to simulation-based design. Thus it will 
be desirable that design equations of all op amps should 
be available. But in spite of the fact that the differential 
two-stage folded-cascode CMOS op amp is used in 
various analog circuits, its small signal design equations 
have not yet been derived analytically. In this paper, the 
transfer function of such an op amp will be analyzed to 
obtain its small-signal design equations. Then the 
analysis result will be verified through the comparison 
with Spice simulations of both a designed high speed 
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CMOS op amp with a unity-gain frequency of 576 MHz 
and a designed very low power CMOS op amp with a 
quiescent power dissipation of 2.5 μW. 

II. MOSFET SMALL-SIGNAL MODEL 

Spice solves directly for small-signal voltages and 
currents using the large-signal equations of BSIM3. As a 
result, BSIM3 guarantees that the results from ac and 
transient simulation are entirely consistent because the 
two simulations use the same set of governing transistor 
equations. Naturally, there is no BSIM3 small-signal 
equivalent circuit model generated independently from 
the large-signal equations. But a small-signal circuit 
model of MOSFETs is needed to obtain the frequency 
responses of CMOS op amps for their design. A 
simplified high-frequency small-signal model shown in 
Fig. 1 has been derived from the large-signal model used 
by BSIM3 [6]. It will be used in the small-signal analysis 
of the two-stage folded-cascode op amp circuit. 

In this model, the complex transconductance or 

transadmittance is defined by *
m m mg g sC= -  where the 

transcapacitance mC  is given by )( dg gdC C- . Also 

dgC  is defined by /  d gq v-¶ ¶ which represents the 

effect of the gate voltage  gv  on the charge dq  

associated with drain. On the other hand, gdC  is 

defined by /g dq v-¶ ¶  which represents the effect of the 

drain voltage dv  on the gate charge gq . If the drain 

and gate are the two terminals of a parallel-plate 

capacitor, dgC  and gdC  would have been equal like in 

the Meyer model. In general, these two transcapacitances 
are not the same. For example, consider a long-channel 
transistor in saturation. Because of pinchoff at the drain 

end, the drain voltage will not affect the gate charge. 

Thus gdC  will be zero. However, the gate voltage will 

greatly affect the inversion charge associated with the 

drain charge dq . Thus dgC  will have a large value. As 

a result, dgC  is always greater or equal to gdC  under 

all operating regions, and then mC  will be greatest in 
the saturation region [5, 6]. 

Finally, the capacitances of five physical capacitors 
shown in the small-signal model should include extrinsic 
capacitances like overlap or junction capacitances. In the 
small-signal analysis, each capacitor is treated as an 
ordinary circuit element with the given capacitance. 
Usually Spice reports these total capacitances at a bias 
point in the operating point printout. For the IBM 0.13 
μm CMOS process, typical small-signal parameters of an 
nMOS transistor operating in the strong or moderate 
inversion region are given in Table 1. 

III. SMALL-SIGNAL ANALYSIS 

In this section, we analyze and verify the small-signal 
operation of a fully differential two-stage folded-cascode 
CMOS op amp to determine its voltage gain in response 
to the input voltage. Fig. 2 shows this operational 
amplifier fed by a differential input signal iV  that is 
applied in a complementary or balanced manner [1-4]. 
That is, the gate of 1M  is increased by / 2i iV V+ = +  

and the gate of 2M  is decreased by / 2i iV V- = - . To 
enhance gain with body effect, the body terminals of 

6M  and 7M  are connected to the power supply DDV , 

whereas those terminals of 8M  and 9M  to the power 

supply SSV- . Because of the circuit symmetry and 
balanced driving, a signal ground as a sort of virtual 

 

Fig. 1. An MOSFET high-frequency small-signal equivalent 
circuit model with the complex transconductance *

mg . 

 

Table 1. Typical parameter values of an nMOS transistor with 
width 9 μm and length 0.49 μm for the 0.13 μm CMOS process 

Parameter Strong Moderate Parameter Strong Moderate 

mg  745 Sm  13.8 Sm  mbg  92.6 Sm  2.1 Sm  

mC  14.7 fF 1.5 fF dsg  18.4 Sm  0.4 Sm  

gsC  40.5 fF 8.5 fF gdC  5.0 fF 4.6 fF 

gbC  2.1 fF 7.2 fF dgC  19.7 fF 6.1 fF 

bsC  10.5 fF 12.3 fF bdC  9.2 fF 10.1 fF 
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ground is established at the source terminals of the input 
differential pair. As a result, the output conductance of 
the current source 3M  will have no effect on the small 
signal operation. Thus a differential half circuit of the op 
amp can be obtained by excluding 3M  for differential 
signal operation. Fig. 3 shows the equivalent half circuit. 
Here nV  is the voltage of node n and the differential 

input voltage is given by ( )i i iV V V+ -º - . In addition, 

the capacitances 1C , 2C , 3C , and 4C  represent the 

total node capacitances at the drains of 1M , 6M , 10M , 

and 13M  respectively. From this half circuit, the 
differential voltage gain of the op amp can be determined 

directly [15, 16]. The nodal equations for this circuit can 
be written in a matrix form as (1). The conductances 

jkg  and capacitances jkC  used in this equation are 

defined in Table 2 using the transconductance mig , body 

transconductance ,mbig  output conductance ,dsig  

transcapacitance ,miC  parasitic capacitances ,gbiC  

gsiC , gdiC , bsiC , and bdiC  of each transistor iM , and 

the load capacitance LC  at each output node. In order 

to reduce the number of nodal equations, 24sC  has been 
used as an equivalent admittance between node 2 and 
node 4. 

 

Fig. 2. A fully differential two-stage folded-cascode CMOS op amp with common-mode feedback circuit model and node numbers. 

 

 

Fig. 3. A high frequency equivalent circuit for the differential half circuit of the two-stage folded-cascode CMOS op amp. 
 

 (1) 

( ) ( )( ) ( ) ( ){ }2
1 1 21 6 33 3 8 13 13 13 131m dg m m m c m c dg dg c cN s g sC g sC g s C C g s C g R C s C R Cé ùé ù= - - + - + - - -ë û ë û  (2) 
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Using the output voltage 4V  of the equivalent half 
circuit, the differential output voltage of the op amp can 
be expressed as 42o o oV V V V+ -º - = . Therefore, the 

differential voltage gain /d o iA V Vº  can be written as a 
rational fraction 
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where 0A  is the dc gain, ziw  is the frequency of zero 

iz , and piw  is the frequency of pole ip . From 

symbolic analysis for the circuit Eq. (1), the numerator 
can be exactly obtained as a factored form like (2). 

Assuming that 2
1 2 1 2 1(1 ) (1 )(1 / )b s b s b s b s b+ + + +;  

and 13 13( )1c m c dgC g R C- ? , the numerator polynomial 

can be approximately factored as 
 

 1 21 13 33( ) m mN s g g g g;   
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The denominator of the differential voltage gain dA  

consists of 226 terms and is given by a fifth-order 
polynomial 

 

 2 3 4 5
0 1 2 3 4 5( )D s a a s a s a s a s a s= + + + + +  (5) 

 

where the coefficient 0a  can be arranged as 

 0 44 11 8 10 33 6 1 4(  )ds ds ds ds dsa g g g g g g g g= + +é ùë û  (6) 
 

As a result, the dc gain 0 (0)dA Aº  can be found as 

 

 1 21 13 33 1 21 13
0

0 1 11 44

m m m m

o

g g g g g g g
A

a g g g
= =  (7) 

 
where output conductance of the first stage is given by 

 

 8 10 6 1 4
1

33 11

( )ds ds ds ds ds
o

g g g g g
g

g g
+

= +  (8) 

 

In general, the coefficient 1a  is related to the open-
circuit time constants and the frequencies of poles as 
follows [17]. 
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Typically op amps are designed so as to have a dominant 

pole 1p . Hence its frequency 1pw  is much smaller than 

all other pole frequencies. In the two-stage op amp, this 
pole is realized by a large compensation capacitance cC . 
As a result, the dominant pole will be related to open-
circuit time constants 11 0( / )a a  associated with cC . 

The terms 11a  usually consist of the largest term with 

cC  and additional terms. Among 25 terms of 1a , the 

candidates for these terms 11a  can be arranged as 
 

 44 11 8 10 33 1 4 6(1 ) ( )c ds ds ds ds ds cg R g g g g g g g C+ + +é ùë û  

 11 33 13 44 13( )( ) m c gdg g g g C C+ + +  (10) 
 

where the largest term is 11 33 13( )m cg g g C . The other 
additional terms for the dominant pole can be found from 
the terms of (10) by insight for circuit and process of trial 
and error. As a result, the final major terms 11a  are 
found as 

 

 11 11 33 13 44 13( )(  )m c gda g g g g C C+ +;  (11) 
 

Thus the dominant pole frequency is approximated as 

Table 2. Definition of each conductance and capacitance used 
in the Eq. (1) for the equivalent small-signal half circuit 

11 1 4 21 22 6 8,     ds ds ds dsg g g g g g gº + + º +  
21 6 6 6 23 8 8 8,    m mb ds m mb dsg g g g g g g gº + + º + +  

33 10 23 44 13 15,     ds ds dsg g g g g gº + º +   
11 1 1 6 24 13,     / (1 )gd m gd c c cC C C C C C C sR Cº ++ - +º  

1 6 6 1 4 4gs bs bd bd gdC C C C C C= + + + +
 

2 6 6 8 8 13 13bd gd bd gd gs gbC C C C C C C= + + + + +
 

3 8 8 10 10gs bs gd bdC C C C C= + + +
 

4 13 15 15L bd gd bdC C C C C= + + +
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 0 1 44
1

11 13 44 13( )( )
o

p
m c gd

a g g
a g g C C

w =
+ +

;  (12) 

 
For a two-stage folded-cascode op amp designed for 

the IBM 0.13 μm CMOS process, the comparison 
between a transfer function with the dominant pole and 
Spice simulation is shown in Fig. 4. It can be seen that 
(12) is an accurate model of the dominant pole and that 
the nondominant poles are needed to reduce the phase 
difference at the unity-gain frequency tf . Because the 
phase margin is a critical performance in reducing power 
dissipation, accurate estimation of the phase at tf  is 
quite important in low power op amp design. 

The nondominant poles can be found by factoring the 
coefficient 5a  with 8 terms that are obtained from the 

symbolic analysis of (1). Assuming that 2C  is 

sufficiently greater than 13gdC  and 13mC , the factored 

form of 5a  can be obtained as (13). Here the factors 

4 13 2( )gdC C C+  have been approximated from the factor 

4 2 13 13 2 13( ) ( )gd gd mC C C C C Cé ù+ + -ë û . If we compare 

coefficients between the denominator of (3) and (5), it 

follows that 
5

0 5
1

( / )pi
i

a aw
=

=Õ . Thus the product of all 

nondominant pole frequencies can be written as 
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When 2C  is not sufficiently greater than 13gdC  and 

13mC , the above approximation makes slight differences 
between model and simulation in high frequency region. 
But such differences can be reduced by using factors 

4 13 2 13( )( )gd gdC C C C+ + . Therefore, the denominator 

polynomial of the voltage gain can be expressed as 
  

4 13
0

1 13 44 13

( )
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  (15) 

 
where the last factor is exactly equal to the third factor of 
the numerator. These factors may give rise to a pole-zero 
doublet. If this doublet is in the passband, it may cause 
severe degradation of settling time while only causing 
minor changes in the frequency response [18]. Besides, 
the doublet near the unity-gain frequency tw  may give 

rise to errors in estimating tw  and the phase margin. To 
enhance stability and accuracy, it is desirable to impose a 

design constraint 5p tw w> . 

The unity-gain frequency of the two-stage folded-
cascode op amp is an implicit nonposynomial [19]. Using 

( ) 1d tA jw º  and 1/ 1,t pw w ? the unity-gain frequency 

can be modeled as 
 

 1
0 1 ( ) m

t p t t
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where tk  is a modeling parameter. Since this design 

equation is nonlinear and nonposynomial for tw , it 

 

 

Fig. 4. Comparison between a dominant-pole transfer function 
model 0 1/ (1 / )pA A s w= +  and Spice simulation for a high 
speed CMOS op amp with a unity-gain frequency of 576 MHz. 

( )( )5 11 3 8 4 2 13 13 2 13 11 3 8 4 13 2( ) ( ) ( )c m gd gd m c c m gd ca C C C C C C C C C C R C C C C C C C Ré ù= - + + - - +ë û ;  (13) 
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should be solved or designed iteratively. In Fig. 4, tf  
was found by iteration. In such an iterative design 
process, tk  can be considered as an updating parameter. 
The phase margin of the op amp is also a complicate 
nonposynomial. Using arctan( )x x;  for 0.5x < , the 
phase margin PM can be approximately obtained from 
 

 
5 5

1 2

PM 90 1 1  
180

t

zi pii i

w
p w w

= =

é ù- °
-ê ú

° ê úë û
å å;  (18) 

 
Here it can be seen that a right-half-plane (RHP) zero 
with negative frequency ziw  gives rise to decrease in 
PM like a left-half-plane pole with positive frequency. 
Small PM leads to excessive gain peaking in the closed-
loop frequency response and undesirable ringing in the 
step response. As a result, the RHP zero will cause 
degradation of op amp stability. On the contrary, a left-
half-plane zero increases the phase margin. 

IV. DESIGN AND VERIFICATION 

In this section, the transfer function will be compared 
with Spice simulations of the two op amps designed by 
sequential geometric programming. Table 3 shows the 
design specifications of op amp 1 and 2. To enlarge the 
performance difference between two op amps, the op 
amp 1 was designed as a high speed op amp while the op 
amp 2 was designed as a low power op amp. In general, 
because op amp design is a nonlinear optimization 
problem, we have to solve it using an iterative approach. 
This is naturally compatible with updating parameters. 
Typically the design equations consist of the transistor 
parameters. Thus the nonposynomial parameters and 
equations are updated through modeling parameters from 
operating point simulation [11]. In this respect, the used 
design paradigm can be called a mixed approach utilizing 
both bias simulations and design equations. Finally, it 
takes 46 and 17 iterations to design the op amp 1 and op 
amp 2 respectively. 

The basic specifications for op amp design are the 
constraints on dc gain, unity-gain frequency, and phase 
margin. In addition to these signal constraints, bias 
constraints should be imposed to ensure that all 
transistors remain in saturation for the input common-
mode voltage CMv  and output voltage Ov . These 

constraints are expressed by the common-mode range 
(CMR) and output swing (OS). The lower and upper 
limits of CMR and OS are given by 

 
  min 3 1 1CM SS ov ov tv V V V V= - + + +  (19) 
  max 5 1CM DD ov tv V V V= - +  (20) 
  min 15O SS ovv V V= - +  (21) 
  max 13O DD ovv V V= -  (22) 

 
To operate properly for the circuit connection 

obtaining the unity-gain amplifier, there must be a 
substantial overlap between the allowable ranges of 

CMv  and Ov . For maximum output swing, the three 
bias voltages shown in Fig. 2 can be expressed as 

 

 5 5 5  B ov tV V V= - -  (23) 

 7 5 7 7B DD ov ov tV V V V V= - - -  (24) 
 9 11 9 9B SS ov ov tV V V V V= - + + +  (25) 

 
The slew rate taking into account LC  can be obtained 
as 

 

 3 15 3SR min ,D D D

c L

I I I
C C

æ ö-
= ç ÷

è ø
 (26) 

 
The active area of the op amp is written as 

 

 
16

1

Area r c c c i i
i

a R a C W L
=

= + +å  (27) 

 
and the quiescent power dissipation is given by 

Table 3. Design constraints and objective of the two-stage 
folded-cascode CMOS op amp 1 and 2 for the 0.13 μm process 

Performance Specification  
for op amp 1 

Specification 
for op amp 2 

0  A (dB) 60³  70³  

 tf (MHz) 570³  4.8³  

PM ( )°  60³  60³  

CMR (V) 0.1 / 0.7  0.1 / 0.7  

OS (V) 0.3 / 0.3-  0.3 / 0.3-  

SR (V/ μs)  500³  1³  

 DP (mW) 0.85£  32.5 10-£ ´  

Area ( 2μm )  minimize minimize 

Power supply 0.6V, 0.15pF, 0.2pFc LC C == =±  
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 ( )5 13( ) 2D DD SS B D DP V V I V Ié ù= + + +ë û  (28) 
 
In order to get the op amp operating in strong 

inversion, a bias constraint for the overdrive voltage 

 min  ov ovV V³  was imposed on each transistor of the op 
amp 1. For this high speed op amp, the comparison 
between the transfer function and Spice simulation is 
shown in Fig. 5. Because the small-signal model is valid 
up to about 10 GHz, the frequency is driven to that 
frequency. Although a pole and three zeros exceed the 
frequency limit of validity, their marks were indicated to 
show the relative positions of the pole and zeros. This op 
amp with LC  of 0.2 pF dissipates a quiescent power of 

0.82 mW at supply voltages 0.6±  V and has a unity-
gain frequency of 576 MHz. It can be seen that the Eqs. 
(3), (4), and (15) is an accurate model for the transfer 
function of the op amp in which all transistors are 
operating in strong inversion. 

Finally, Fig. 6 shows the comparison between the transfer 
function and Spice simulation for the op amp 2 in which all 
transistors are operating in moderate inversion. In order to 
realize this operation, a special constraint for channel width 
W ≥ 0.65 μm was imposed on two transistors 4M  and 

5M . This op amp has a unity-gain frequency of 4.8 MHz 
but operates with a very low power dissipation of 2.5 μW. It 
can be also seen that the derived transfer function is a good 
model even for the op amp operating in moderate inversion. 
For these two-stage folded-cascode op amps, the values of 

DP , tf , PM, dc gain, pole and zero frequencies are shown 
in Table 4. 

 

Fig. 5. Comparision of the transfer function model to Spice 
simulation for high speed op amp 1. Mark ‘x’ indicates a pole 
frequency, ‘o’ a zero frequency, and ‘z’ a pole-zero doublet. 

 

 

 

Fig. 6. Comparision of the transfer function model to Spice 
simulation for low power op amp 2 with dissipation of 2.5 μW. 

 
 

Table 4. Values of power dissipation, unity-gain frequency, 
phase margin, dc gain, pole frequencies, and zero frequencies 
for high speed and low power 2-stage folded-cascode op amps 

Performances, poles, and zeros Op amp 1 Op amp 2 

Power dissipation DP   0.82 mW 2.5 Wm  

Unity-gain frequency tf   576 MHz 4.8 MHz 

Phase margin PM 60.0o  89.6o  
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V. CONCLUSIONS 

Using a high-frequency small-signal equivalent circuit 
with the complex transconductance, the fully differential 
two-stage folded-cascode CMOS operational amplifier 
was analyzed to obtain its small signal transfer function. 
As a result, the expressions for dc gain, five zero 
frequencies, five pole frequencies, unity-gain frequency, 
and phase margin were derived for op amp design using 
design equations. From comparing with Spice analysis, 
the good agreement between the transfer function model 
and simulation result has been observed for two op amps 
operating in either moderate or strong inversion. Thus the 
proposed transfer function could be usefully used in 
accurately designing the differential two-stage folded-
cascode CMOS operational amplifiers. 
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