FINITELY t-VALUATIVE DOMAINS

Gyu Whan Chang

Abstract

Let D be an integral domain with quotient field K. In [1], the authors called D a finitely valuative domain if, for each $0 \neq u \in K$, there is a saturated chain of rings $D=D_{0} \subsetneq D_{1} \subsetneq \cdots \subseteq$ $D_{n}=D[x]$, where $x=u$ or u^{-1}. They then studied some properties of finitely valuative domains. For example, they showed that the integral closure of a finitely valuative domain is a Prüfer domain. In this paper, we introduce the notion of finitely t-valuative domains, which is the t-operation analog of finitely valuative domains, and we then generalize some properties of finitely valuative domains.

1. Introduction

Let D be an integral domain with quotient field K. Let R be an overring of D, i.e., a ring between D and K. As in [1], we say that R is within n steps of D if there is a saturated chain of overrings $D=$ $D_{0} \subsetneq D_{1} \subsetneq D_{1} \subsetneq \cdots \subsetneq D_{m}=R$ where $m \leq n$. We say that R is within finitely many steps of D if R is within n steps of D for some integer $n \geq 1$. An $x \in K$ is said to be within n steps of D if $D[x]$ is within n steps of D. An integral domain D is an n valuative domain if, for each $0 \neq u \in K$, at least one of u or u^{-1} is within n steps of D, while D is a finitely valuative domain if, for each $0 \neq u \in K$, at least one of u or u^{-1} is

[^0]within n steps of D for some integer $n=n(u) \geq 1$. Clearly, an n valuative domain is a finitely valuative domain. In this paper, we introduce the notion of finitely t-valuative domains, which is the t-operation analog of finitely valuative domains, and we then generalize some results of finitely valuative domains.

To facilitate the reading of introduction, we first review the definitions related to the t-operation. Let \bar{D} be the integral closure of D in K, X be an indeterminate over D, and $D[X]$ be the polynomial ring over D. For a polynomial $f \in K[X]$, we denote by $c_{D}(f)$ (simply, $c(f)$) the fractional ideal of D generated by the coefficients of f. Let $\mathbf{F}(D)$ (resp., $\mathbf{f}(D)$) be the set of nonzero (resp., nonzero finitely generated) fractional ideals of D; so $\mathbf{f}(D) \subseteq \mathbf{F}(D)$. For $I \in \mathbf{F}(D)$, let $I^{-1}=\{u \in K \mid u I \subseteq D\}$, $I_{v}=\left(I^{-1}\right)^{-1}$, and $I_{t}=\cup\left\{J_{v} \mid J \in \mathbf{f}(D)\right.$ and $\left.J \subseteq I\right\}$. Clearly, if $I \in \mathbf{f}(D)$, then $I_{v}=I_{t}$. We say that $I \in \mathbf{F}(D)$ is a t-ideal if $I_{t}=I$; a t-ideal is a maximal t-ideal if it is maximal among proper integral t ideals; and $t-\operatorname{Max}(D)$ is the set of maximal t-ideals of D. It is well known that each maximal t-ideal is a prime ideal and $t-\operatorname{Max}(D) \neq \emptyset$ when D is not a field. An $I \in \mathbf{F}(D)$ is said to be t-invertible if $\left(I I^{-1}\right)_{t}=D$. We say that D is a Prüfer v-multiplication domain ($\mathrm{P} v \mathrm{MD}$) if each nonzero finitely generated ideal of D is t-invertible. An upper to zero in $D[X]$ is a nonzero prime ideal Q of $D[X]$ with $Q \cap D=(0)$. A domain D is called a UMT-domain if each upper to zero in $D[X]$ is a maximal t-ideal. It is known that D is a UMT-domain if and only if $\overline{D_{P}}$ is a Prüfer domain for all $P \in t-\operatorname{Max}(D)$ [5, Theorem 1.5]. In particular, \bar{D} is a Prüfer domain if and only if D is a UMT-domain whose maximal ideals are t-ideal [4, Theorem 1.1 and Corollary 1.3]. It is also known that D is a $\mathrm{P} v \mathrm{MD}$ if and only if D is an integrally closed UMT-domain [6, Proposition 3.2]. Recall that D is a GCD-domain if and only if I_{v} is principal for all $I \in \mathbf{f}(D)$; so GCD-domains are $\mathrm{P} v \mathrm{MDs}$. An overring R of D is said to be t-linked over D if $I^{-1}=D$ for $I \in \mathbf{f}(D)$ implies $(I R)^{-1}=R$. For an overring R of D, let $R_{w}=\left\{x \in K \mid x J \subseteq R\right.$ for some $J \in \mathbf{f}(D)$ with $\left.J^{-1}=D\right\}$. It is known that R_{w} is the smallest t-linked overring of D that contains R [2, Remark 3.3]; hence R is t-linked over D if and only if $R_{w}=R$. Also, if we let $N_{v}=\left\{f \in D[X] \mid c(f)_{v}=D\right\}$, then $R[X]_{N_{v}} \cap K=R_{w}$, and hence R is t-linked over D if and only if $R[X]_{N_{v}} \cap K=R$ [2, Lemma 3.2].

Let R be a t-linked overring of D. We say that R is within t-linked n steps of D if there is a saturated chain of t-linked overrings $D=D_{0} \subsetneq$
$D_{1} \subsetneq D_{1} \subsetneq \cdots \subsetneq D_{m}=R$ where $m \leq n$. We say that R is within t-linked finitely many steps of D if R is within t-linked n steps of D for some integer $n \geq 1$. We say that a nonzero $u \in K$ is within t-linked finitely many steps of D if $(D[u])_{w}$ is within t-linked finitely many steps of D. We say that D is a finitely t-valuative domain if, for each nonzero $u \in K$, at least one of u or u^{-1} is within t-linked finitely many steps of D. Our first result of this paper shows that if there is an integer $n \geq 1$ such that for each $0 \neq u \in K$, at least one of u or u^{-1} is within t-linked n steps of D, then D is an n-valuative domains, which shows why we don't need to define the t-operation analog of n valuative domains. We prove that if D is a finitely t-valuative domain, then D is a UMT-domain, and hence an integrally closed finitely t-valuative domain is a $\mathrm{P} v \mathrm{MD}$. It is also shown that (i) Krull domains are finitely t-valuative; (ii) if D is a GCD-domain, then D is finitely t-valuative if and only if $D[X]$ is finitely t-valuative, if and only if $D[X]_{N_{v}}$ is finitely valuative; and (iii) if D is an integrally closed n valuative domain for an integer $n \geq 1$, then $D[X]$ is a finitely t-valuative domain.

2. Finitely t-valuative domains

Throughout D is an integral domain with quotient field K, X is an indeterminate over $D, D[X]$ is the polynomial ring over D, and $N_{v}=$ $\left\{f \in D[X] \mid c(f)_{v}=D\right\}$.

Proposition 1. Let n be a positive integer. If, for each $0 \neq u \in K$, either u or u^{-1} is within t-linked n steps of D, then $|t-\operatorname{Max}(D)| \leq 2 n+1$. Hence $t-\operatorname{Max}(D)=\operatorname{Max}(D)$, the set of maximal ideals of D, and thus D is an n-valuative domain.

Proof. Assume $|t-\operatorname{Max}(D)| \geq 2 n+2$. Let $\left\{P_{i} \mid i=1, \ldots, 2 n+2\right\}$ be a set of maximal t-ideals of D, and set $S=D \backslash \cup_{i=1}^{2 n+2} P_{i}$. Then $\operatorname{Max}\left(D_{S}\right)=$ $\left\{P_{i} D_{S} \mid i=1, \ldots, 2 n+2\right\}$. Let $0 \neq u \in K$, and let $x=u$ or u^{-1}. Note that $\left(D[x]_{w}\right)_{S}=D[x]_{S}=D_{S}[x]$; hence if A is a ring such that $D_{S} \subseteq A \subseteq D[x]_{S}$, then $A=\left(A \cap D[x]_{w}\right)_{S}$ and $A \cap D[x]_{w}$ is t-linked over D (note that both A and $D[x]_{w}$ are t-linked over D). Hence, either u or u^{-1} is within n steps of D_{S}. Thus, D_{S} is an n-valuative domain, and so by [1, Theorem 2.6], D_{S} has at most $2 n+1$ maximal ideals, a contradiction. Therefore, $|t-\operatorname{Max}(D)| \leq 2 n+1$. Moreover, if M is a maximal ideal of D, then $M \subseteq \cup_{P \in t-\operatorname{Max}(D)} P$, and since $|t-\operatorname{Max}(D)| \leq 2 n+1$, we have
$M \subseteq P$ or $M=P$ for some $P \in t-\operatorname{Max}(D)$. Thus, each maximal ideal of D is a t-ideal, which means that $t-\operatorname{Max}(D)=\operatorname{Max}(D)$ and each overring of D is t-linked over D.

As we prove in Proposition 1, if there is a positive integer n such that, for each $0 \neq u \in K$, either u or u^{-1} is within t-linked n steps of D, then D is an n-valuative domain. So, in this paper, we focus on finitely t-valuative domains. Our next result shows the relationship between finitely valuative domains and finitely t-valuative domains.

Proposition 2. D is finitely valuative if and only if D is finitely t-valuative and each maximal ideal of D is a t-ideal.

Proof. Assume that D is finitely valuative. Then the integral closure of D is a Prüfer domain [1, Theorem 3.4], and hence D is a UMT-domain in which each maximal ideal of D is a t-ideal. Moreover, note that if each maximal ideal of D is a t-ideal, then every overring of D is t-linked over D. Thus, D is finitely t-valuative. The converse is clear.

We next give the finitely t-valuative domain analog of [1, Theorem 3.4] that the integral closure of a finitely valuative domain is a Prüfer domain.

Theorem 3. If D is a finitely t-valuative domain, then D is a UMTdomain. In particular, an integrally closed finitely t-valuative domain is a PvMD.

Proof. Let P is a maximal t-ideal of D. It suffices to show that the integral closure of D_{P} is a Prüfer domain [5, Theorem 1.5]. To show this, let $0 \neq u \in K$. Then at least one of u or u^{-1}, for convenience, say u, is within t-linked finitely many steps of D. Hence there exists a saturated chain of t-linked overrings of D, say, $D=D_{0} \subsetneq D_{1} \subsetneq \cdots \subsetneq$ $D_{n}=(D[u])_{w}$. Clearly, $D_{P}=\left(D_{0}\right)_{P} \subsetneq\left(D_{1}\right)_{D \backslash P} \subsetneq \cdots \subsetneq\left(D_{n}\right)_{D \backslash P}=$ $\left((D[u])_{w}\right)_{D \backslash P}=(D[u])_{D \backslash P}=D_{P}[u]$ is a chain of overrings of D_{P}. Let R be a ring such that $\left(D_{i}\right)_{D \backslash P} \subsetneq R \subsetneq\left(D_{i+1}\right)_{D \backslash P}$. Note that $R=(R \cap$ $\left.D_{i+1}\right)_{D \backslash P} ; D_{i} \subseteq R \cap D_{i+1} \subseteq\left(R \cap D_{i+1}\right)_{w} \subseteq\left(D_{i+1}\right)_{w}=D_{i+1}$; and $(R \cap$ $\left.D_{i+1}\right)_{w}$ is t-linked over D. Hence, either $\left(R \cap D_{i+1}\right)_{w}=D_{i}$ or $(R \cap$ $\left.D_{i+1}\right)_{w}=D_{i+1}$, and thus $R=\left(R \cap D_{i+1}\right)_{D \backslash P}=\left(\left(R \cap D_{i+1}\right)_{w}\right)_{D \backslash P}=$ $\left(D_{i}\right)_{D \backslash P}$ or $R=\left(\left(R \cap D_{i+1}\right)_{w}\right)_{D \backslash P}=\left(D_{i+1}\right)_{D \backslash P}$. Therefore, the chain $D_{P}=\left(D_{0}\right)_{P} \subsetneq\left(D_{1}\right)_{D \backslash P} \subsetneq \cdots \subsetneq\left(D_{n}\right)_{D \backslash P}$ is saturated. Hence D_{P} is a finitely valuative domain, and thus the integral closure of D_{P} is a Prüfer
domain [1, Theorem 3.4]. The "in particular" part follows because an integrally closed UMT-domain is a $\mathrm{P} v \mathrm{MD}$.

By Theorem 3, an integrally closed finitely t-valuative domain is a $\mathrm{P} v \mathrm{MD}$. Thus, it is reasonable to study $\mathrm{P} v \mathrm{MDs}$ that are finitely t valuative domains. Let $N_{v}=\left\{f \in D[X] \mid c(f)_{v}=D\right\}$. It is well known that D is a $\mathrm{P} v \mathrm{MD}$ if and only if $D[X]_{N_{v}}$ is a Prüfer domain, if and only if each ideal of $D[X]_{N_{v}}$ is extended from D [7, Theorems 3.1 and 3.7]; in this case, $f D[X]_{N_{v}}=c(f) D[X]_{N_{v}}$ for each $f \in D[X]$.

Lemma 4. Let D be a $P v M D$ and $\left\{D_{\alpha}\right\}$ be the set of t-linked overrings of D.

1. The mapping $D_{\alpha} \mapsto D_{\alpha}[X]_{N_{v_{\alpha}}}$ is a bijection from the set $\left\{D_{\alpha}\right\}$ onto the set of overrings of $D[X]_{N_{v}}$, where $N_{v_{\alpha}}=\left\{f \in D_{\alpha}[X] \mid\right.$ $\left.c_{D_{\alpha}}(f)_{v}=D_{\alpha}\right\}$.
2. If $0 \neq u \in K$, then u is within t-linked n steps of D if and only if u is within n steps of $D[X]_{N_{v}}$.
3. If $D[X]_{N_{v}}$ is a finitely valuative domain, then D is a finitely t valuative domain.

Proof. (1) This follows directly from [3, Lemma 2 and Corollary 6]. (2) This is an immediate consequence of (1), because $D[u]_{w}=D[u][X]_{N_{v}} \cap K$ and $D[u][X]_{N_{v}}=\left(D[X]_{N_{v}}\right)[u]$. (3) This is an immediate consequence of (2).

We say that D is of finite character (resp., finite t-character) if each nonzero nonunit of D is contained in a finite number of maximal ideals (resp., maximal t-ideals) of D. The t-dimension of a $\mathrm{P} v \mathrm{MD} D$, denoted by $t-\operatorname{dim}(D)$, is $\sup \{\operatorname{ht} P \mid P \in t-\operatorname{Max}(D)\}$. It is clear that if D is a Krull domain, then D is a $\mathrm{P} v \mathrm{MD}$ of $t-\operatorname{dim}(D)=1$ and finite t-character.

Corollary 5. If D is a PvMD of $t-\operatorname{dim}(D)<\infty$ and finite t character, then D is a finitely t-valuative domain. Hence a Krull domain is finitely t-valuative.

Proof. Clearly, $D[X]_{N_{v}}$ is a finite dimensional Prüfer domain of finite character, and hence $D[X]_{N_{v}}$ is a finitely valuative domain [1, Corollary 4.15]. Thus, D is a finitely t-valuative domain by Lemma 4(3).

Let I be an ideal of D. As in [1], we say that I is finitely light if I is contained in finitely many prime ideals of D. Similarly, we say that I is finitely t-light if the number of prime t-ideals of D containing I is finite.

Recall that if P is a nonzero prime ideal of a $\mathrm{P} v \mathrm{MD} D$, then $P_{t} \subsetneq D$ if and only if P is a t-ideal; so if $I_{t} \subsetneq D$, then I is finitely t-light if and only if $I D[X]_{N_{v}}$ is finitely light.

Corollary 6. The following are equivalent for an integrally closed domain D.

1. D is a finitely t-valuative domain.
2. D is a $P v M D$ such that for $0 \neq b, c \in D$, letting $I=b D+c D$, at least one of $b I^{-1}$ or $c I^{-1}$ is finitely t-light.

Proof. (1) \Rightarrow (2) First, note that D is a PvMD by Theorem 3, and hence $D[X]_{N_{v}}$ is a Prüfer domain. Let $u=\frac{b}{c}$. Then either u or u^{-1} is within t-linked n steps of D for some integer $n=n(u) \geq 1$, and thus either u or u^{-1} is within n steps of $D[X]_{N_{v}}$ by Lemma 4(2). Hence, by [1, Corollary 1.15], either $\left(D[X]_{N_{v}}:_{D[X]_{N_{v}}} u\right)=c \cdot\left(I D[X]_{N_{v}}\right)^{-1}=$ $\left(c I^{-1}\right) D[X]_{N_{v}}$ or $\left(D[X]_{N_{v}}:_{D[X]_{N_{v}}} u^{-1}\right)=\left(b I^{-1}\right) D[X]_{N_{v}}$ is contained in exactly n primes. Thus, either $b I^{-1}$ or $c I^{-1}$ is contained in exactly n prime t-ideals of D. Hence at least one of $b I^{-1}$ or $c I^{-1}$ is finitely t-light.
(2) \Rightarrow (1) By assumption, $D[X]_{N_{v}}$ is a Prüfer domain and either $\left(c I^{-1}\right) D[X]_{N_{v}}$ or $\left(b I^{-1}\right) D[X]_{N_{v}}$ is finitely light. Hence if $u=\frac{b}{c}$, then u or u^{-1} is within finitely many steps of $D[X]_{N_{v}}[1$, Lemma 4.4], and so by Lemma $4(2), u$ or u^{-1} is within t-linked finitely many steps of D. Thus, D is finitely t-valuative.

It is known that if D is an integrally closed n-valuative domain, then D is a Prüfer domain with at most $2 n+1$ maximal ideals [1, Proposition 4.2]. Hence, an integrally closed n-valuative domain is a Bezout domain (and so a GCD-domain). This is why we next study GCD-domains that are finitely t-valuative domains.

Corollary 7. The following are equivalent for a GCD-domain D.

1. D is a finitely t-valuative domain.
2. $D[X]_{N_{v}}$ is a finitely valuative domain.
3. $D[X]$ is a finitely t-valuative domain.
4. For each pair of t-comaximal elements $a, b \in D$, i.e., $(a D+b D)_{t}=$ D, at least one of a or b is finitely t-light.
5. For each pair of t-comaximal finitely generated ideals I and J of D, i.e., $(I+J)_{t}=D$, at least one of I or J is finitely t-light.

Proof. (1) \Rightarrow (4) Corollary 6.
(4) $\Leftrightarrow(5)$ This follows because A_{t} is principal for all nonzero finitely generated ideals A of a GCD-domain and $(I+J)_{t}=\left(I_{t}+J_{t}\right)_{t}$.
(5) \Rightarrow (2) Let $f, g \in D[X]$ be nonzero such that $f D[X]_{N_{v}}+g D[X]_{N_{v}}=$ $D[X]_{N_{v}}$. Then $f D[X]_{N_{v}}=c(f) D[X]_{N_{v}} ; g D[X]_{N_{v}}=c(g) D[X]_{N_{v}}$; and $(c(f)+c(g))_{t}=D$. Hence by (5), at least one of $c(f)$ or $c(g)$ is finitely t-light, and thus either f or g is finitely light. Thus, $D[X]_{N_{v}}$ is finitely valuative [1 , Theorem 4.5].
$(2) \Rightarrow(1)$ Lemma 4(3).
(3) \Rightarrow (4) Note that $a, b \in D$ are t-comaximal in D if and only if a, b are t-comaximal in $D[X]$ and that $P[X]$ is a prime t-ideal of $D[X]$ for all prime t-ideals P of D. Thus, the proof is completed by the equivalence of (1) and (4).
(5) \Rightarrow (3) Let $f, g \in D[X]$ be t-comaximal elements of $D[X]$. Then $c(f)$ and $c(g)$ are t-comaximal finitely generated ideals of D, and hence at least one of $c(f)$ or $c(g)$ is finitely t-light. Note that if Q is a prime t-ideal of $D[X]$, then $Q \cap D=(0)$ or $Q=(Q \cap D)[X]$ and $Q \cap D$ is a prime t-ideal of D (cf. [7, Theorem 3.1] and [6, Theorem 1.4]). Clearly, each nonzero element of $D[X]$ is contained in only finitely many prime t-ideals Q of $D[X]$ with $Q \cap D=(0)$, because $D[X]_{D \backslash\{0\}}$ is a principal ideal domain. Thus, either f or g is finitely t-light. Therefore, $D[X]$ is a finitely t-valuative domain by the equivalence of (1) and (4).

Corollary 8. If D is an integrally closed n-valuative domain for some integer $n \geq 1$, then $D[X]$ is a finitely t-valuative domain.

Proof. Recall from [1, Proposition 4.2] that D is a Bezout domain (hence GCD-domain). Thus, by Corollary $7, D[X]$ is a finitely t-valuative domain.

References

[1] P.-J. Cahen, D.E. Dobbs, and T.G. Lucas, Finitely valuative domains, J. Algebra Appl. 6 (2012), 1250112 (39 pages).
[2] G.W. Chang, Strong Mori domains and the ring $D[X]_{N_{v}}$, J. Pure Appl. Algebra 197 (2005), 293-304.
[3] G.W. Chang, Overrings of the Kronecker function ring $\operatorname{Kr}(D, *)$ of a Prüfer *-multiplication domain D, Bull. Korean Math. Soc. 46 (2009), 1013-1018.
[4] G.W. Chang and M. Fontana, Upper to zero in polynomial rings and Prüfer-like domains, Comm. Algebra 37 (2009), 164-192.
[5] M. Fontana, S. Gabelli, and E. Houston, UMT-domains and domains with Prüfer integral closure, Comm. Algebra 26 (1998), 1017-1039.
[6] E. Houston and M. Zafrullah, On t-invertibility II, Comm. Algebra 17 (1989), 1955-1969.
[7] B.G. Kang, Prüfer v-multiplication domains and the ring $R[X]_{N_{v}}$, J. Algebra 123 (1989), 151-170.

Gyu Whan Chang
Department of Mathematics Education
Incheon National University
Incheon 406-772, Korea.
E-mail: whan@incheon.ac.kr

[^0]: Received September 6, 2014. Revised September 16, 2014. Accepted September 16, 2014.

 2010 Mathematics Subject Classification: 13A15, 13A18, 13B02, 13G05.
 Key words and phrases: Finitely t-valuative domain, $\mathrm{P} v \mathrm{MD}, t$-operation, $D[X]_{N_{v}}$.
 This work was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology (2010-0007069).
 (c) The Kangwon-Kyungki Mathematical Society, 2014.

 This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

