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SATURATION ASSUMPTIONS FOR A 1D

CONVECTION-DIFFUSION MODEL

Hongchul Kim† and Seon-Gyu Kim

Abstract. We refer to the saturation assumptions on the finite
element approximation for a one dimensional convection-diffusion
model. By examining piecewise linear finite elements with refined
mesh by half and hierarchical bases, we verify the saturation results,
respectively.

1. Introduction

The saturation assumption has been an essential part in establishing
the efficient a posteriori error estimators. One of the most popular a
posteriori error estimators is the hierarchical estimators introduced by
Bank and Weiser [4] for an elliptic problem and symmetric problem. The
saturation assumption asserts that the best approximation error in the
energy norm with piecewise quadratic finite elements is strictly smaller
than that of piecewise linear elements. In this note, we will verify that
the saturation assumptions hold true for the piecewise linear hierarchical
elements on a singularly perturbed one-dimensional convection-diffusion
equation. A good overview for hierarchical basis functions can be found
in [7]. The advantages of hierarchical bases are principally connected to
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the possibility of obtaining a posteriori error estimators from the anal-
ysis of the solution components of high level([2]). Bank and Smith [3]
presented an analysis of an a posteriori error estimator based on the
use of hierarchical basis functions under the presumption of the satura-
tion assumption between the uniform and hierarchical mesh refinements.
However, the saturation assumption is difficult to ascertain, in practice.
Dörfler and Nochetto [5] have used the comparison technique with the
residual estimator to circumvent the obscure saturation assumption in-
stead.

Let us consider the simple one dimensional convection-diffusion prob-
lem

−εu′′(x) + u′(x) = 1, 0 < x < 1 ,

u(0) = 1, u(1) = 0 ,
(1.1)

where 0 < ε < 1 is a small positive parameter called the singular per-
turbation parameter. The exact solution of the problem (1.1) is given
by

(1.2) u(x) = x−K
(

2 exp(−1− x
ε

)−
(

1 + exp(−1

ε
)

))
,

where K =

(
1− exp(−1

ε
)

)−1
. And we also have

(1.3) u′(x) = 1− 2K

ε
exp(−1− x

ε
) .

We know that it presents a boundary layer of size O(ε) near the right
end boundary x = 1 if ε is small as shown in Figure 1.

Let us take the solution space V = H1
0 ((0, 1)) for the variational

problem of (1.1) : Seek u ∈ V such that

(1.4)

∫ 1

0

(εu′ v′ − u v′) dx =

∫ 1

0

v dx, ∀v ∈ V .

We begin approximation of (1.4) by the Galerkin method with linear
finite elements on a uniform mesh. More precisely, we choose a positive
integer N , and we set h = 1/N, xj = jh , for j = 0, 1, · · · , N . Then we
approximate the variational problem with the space

Vh =

{
v ∈ C([0, 1]) | v

∣∣∣
[xj , xj+1]

∈ P1, j = 0, 1, · · · , N − 1

}
.
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Figure 1. Exact solution with a boundary layer at x = 1
when ε = 0.01

Thus the solution will be of the form

(1.5) uh(x) =
N−1∑
j=0

uj φj(x) , uj = u(xj) ,

where φj ∈ Vh are linear Lagrange basis functions. It is well known that
the standard Galerkin discretizaton gives rise to unstable oscillations
unless the exact solution is regular and the discretization parameter is
sufficiently small.

Rossi [6] achieved the saturation assumption for a one-dimensional
convection-diffusion model in a different setting to ours by considering
an artificial diffusion in conjunction with stabilization techniques in the
uniform mesh. The purpose of this paper is to present some direct proofs
for the saturation assumptions to the model. This paper is organized as
follows. In section 2, we will verify that the saturation assumption is
fully satisfied under the piecewise linear elements in mesh refinement by
half, and in section 3 the saturation for the piecewise linear hierarchical
elements shall be presented.

2. Saturation for piecewise linear elements in mesh refine-
ment

We will examine the piecewise linear elements with mesh refinements
by half to verify the saturation assumption for the model problem.

Theorem 2.1. Let uh ∈ Vh and uh
2
∈ Vh

2
be finite element solutions

of the problem (1.4). Then the saturation assumption holds true in the
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sense that there exists 1/2 ≤ β < 1 independent of the mesh size h such
that

(2.1) |||u− uh
2
||| ≤ β |||u− uh||| ,

where |||·||| denotes the energy norm.

Proof. To prove (2.1), at first we evaluate the error in the subinterval
[xj, xj+1], that is the integral

Ij(h) =

∫ xj+1

xj

|u′(x)− u′h(x)|2 dx .

By (1.5), it follows that

uh
′(x)
∣∣∣[

xj , xj+1

]
=

1

h
(uj+1 − uj)

= 1− 2K

h
exp(−1

ε
)

(
exp(

h

ε
)− 1

)
exp(

jh

ε
) .

(2.2)

Hence from (1.2), (1.3) and (2.2), we have

Ij(h)

=

∫ xj+1

xj

|u′(x)− u′h(x)|2 dx

= 4K2 exp(−2

ε
)

∫ xj+1

xj

∣∣∣∣−1

ε
exp(

x

ε
) +

1

h

(
exp(

h

ε
)− 1

)
exp(

jh

ε
)

∣∣∣∣2 dx
= 4K2 exp(−2

ε
)

[
1

2ε

(
exp(

2(j + 1)h

ε
)− exp(

2jh

ε
)

)
− 1

h

(
exp(

h

ε
)− 1

)2

exp(
2jh

ε
)

]

= 4K2

[
1

2ε

(
1− exp(−2h

ε
)

)
− 1

h

(
1− exp(−h

ε
)

)2
]

· exp(−2

ε
)exp(

2

ε
(j + 1)h) .
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Using N = 1/h, it is followed that

N−1∑
j=0

exp(
2

ε
(j + 1)h) = exp(

2h

ε
)
N−1∑
j=0

(
exp(

2h

ε
)

)j

= exp(
2h

ε
)

1− exp(
2

ε
)

1− exp(
2h

ε
)

.

Thus the approximation error in the energy norm shall be

|||u− uh|||2 =
N−1∑
j=0

Ij(h)

= 4K2

[
1

2ε

(
1− exp(−2h

ε
)

)
− 1

h

(
1− exp(−h

ε
)

)2
]

· exp(−2

ε
) exp(

2h

ε
)

1− exp(
2

ε
)

1− exp(
2h

ε
)

.

(2.3)

Using this result, we can evaluate the error in the refined mash as
follows

|||u− uh
2
|||2 =

2N−1∑
j=0

Ij
(
h

2

)
= 4K2

[
1

2ε

(
1− exp(−h

ε
)

)
− 2

h

(
1− exp(− h

2ε
)

)2
]

·
2N−1∑
j=0

exp(−2

ε
(1− (j + 1)

h

2
))

= 4K2

[
1

2ε

(
1− exp(−h

ε
)

)
− 2

h

(
1− exp(− h

2ε
)

)2
]

· exp(−2

ε
)exp(

h

ε
)

1− exp(
2

ε
)

1− exp(
h

ε
)

.
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Now, we consider the ratio

r(h, ε) =
|||u− uh

2
|||2

|||u− uh|||2
.

If we prove that there exists β which is independent on h such that
r(h, ε) ≤ β2 < 1 then (2.1) is verified. Taking x = h/ε, the ratio is
simplified into

r(h, ε) =
x(1− exp(−x))− 4

(
1− exp(−x

2
)
)2

x (1− exp(−2x))− 2 (1− exp(−x))2
1− exp(−2x)

1− exp(−x)
: = R(x) .

Simple considerations give rise that R(x) is a strictly increasing function.
Also it is easy to check that

lim
x→0+

R(x) =
1

4
, lim

x→∞
R(x) = 1 .

Whenever h is small enough, we have a sharper result

β2 = 1/4 + o(1)

by considering the expansion

R(x) =
1

4
+

3x2

160
− 89x4

179200
+ O(x6) .

Therefore, taking advantage from the bound h ≤ 1, we deduce

r(h, ε) ≤ β2 = R

(
1

ε

)
< 1 ,

so that we have proved (2.1).

It is obvious that Vh
2
⊂ Vh ⊂ V and uh

2
∈ Vh

2
. The bases of Vh

2
are

composed of piecewise linear functions as in Figure 2 (a).

3. Saturation for piecewise linear hierarchical architecture

In this section, we will examine the case of linear hierarchical bases
by supplementing the linear Lagrange basis functions φ̄j+ 1

2
at the middle

points xj+ 1
2

of subinterval as shown in Figure 2 (b).

Let us denote the approximation space by piecewise linear hierarchi-
cal bases to V̄h. It is obvious that V̄h = Vh

⊕
linear span of {φ̄j+ 1

2
} .
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Figure 2. (a) linear elements in mesh refinement by half
(b) linear hierarchical elements (c) linear quadratic hier-
archical elements

Compared with the pure mesh refinements, the main advantages of tak-
ing hierarchical bases come from the facts that it is easy to update the
results based on the previous coarser mesh as well as it reduces the com-
putational effort. For this reason, some studies has been done to develop
a posteriori error estimators by using hierarchical bases([1], [3]).

Lemma 3.1. Let ūh ∈ V̄h be the finite element solutions by piecewise
linear hierarchical bases for the problem (1.4). Then the error in the
energy norm is followed by

|||u− ūh|||2

= 4K2exp(−2

ε
)

[
1

2ε

(
1− exp(−h

ε
)

)
− 2

h

(
1− exp(− h

2ε
)

)2
]

·
(

1 + exp(−h
ε

)

)
exp(

2h

ε
)

1− exp(
2

ε
)

1− exp(
2h

ε
)

.

(3.1)

Proof. Hierarchical approximation in the second level just supple-
ments φ̄j+ 1

2
, so that the approximation will be

ūh(x) =
N−1∑
j=0

[
ujφj(x) + δj+ 1

2
φ̄j+ 1

2
(x)
]
, u0 = u(x0) = 1 .
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Hence using

ūh(xj+ 1
2
) = ujφj(xj+ 1

2
) + uj+1φj(xj+ 1

2
) + δj+ 1

2
φ̄j+ 1

2
(xj+ 1

2
)

=
1

2
uj +

1

2
uj+1 + δj+ 1

2
,

we have

δj+ 1
2

= uj+ 1
2
− 1

2
(uj + uj+1) .

For the estimation of the error, we need to evaluate ūh
′(x)
∣∣∣[

xj , xj+1
2

] and

ūh
′(x)
∣∣∣[

x
j+1

2
, xj+1

] separately. Direct computation leads to

ūh
′(x)
∣∣∣[

xj , xj+1
2

]
= ujφj

′(x) + uj+1φj+1
′(x) + δj+ 1

2
φ̄j+ 1

2

′(x)
∣∣∣[

xj , xj+1
2

]
= −1

h
uj +

1

h
uj+1 +

2

h
δj+ 1

2

= −1

h
uj +

1

h
uj+1 +

2

h

(
uj+ 1

2
− 1

2
(uj + uj+1)

)
=

2

h

(
uj+ 1

2
− uj

)
=

2

h

[(
xj+ 1

2
− xj

)
− 2Kexp(−1

ε
)

(
exp(

h

2ε
)− 1

)
exp(

jh

ε
)

]
= 1− 4K

h
exp(−1

ε
)

(
exp(

h

2ε
)− 1

)
exp(

jh

ε
) .

Likewise, one can also derive

ūh
′(x)
∣∣∣[

x
j+1

2
, xj+1

] = 1− 4K

h
exp(−1

ε
)

(
exp(

h

2ε
)− 1

)
exp(

(j + 1
2
)h

ε
) .

Let us put

Īh =

∫ xj+1

xj

|u′(x)− ūh ′(x)|2 dx .
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Then using∫ x
j+1

2

xj

|u′(x)− ūh ′(x)|2 dx

=

∫ x
j+1

2

xj

∣∣∣∣(1− 2K

ε
exp(−1− x

ε
)

)
−
(

1− 4K

h
exp(−1

ε
)

(
exp(

h

2ε
)− 1

)
exp(

jh

ε
)

)∣∣∣∣2 dx
= 4K2exp(−2

ε
)

[
1

2ε

(
exp(

h

ε
)− 1

)
− 2

h

(
exp(

h

2ε
)− 1

)2
]

exp(
2jh

ε
)

and ∫ xj+1

x
j+1

2

|u′(x)− ūh ′(x)|2 dx

= 4K2exp(−2

ε
)

[
1

2ε

(
exp(

h

ε
)− 1

)
−2

h

(
exp(

h

2ε
)− 1

)2
]

exp(
(2j + 1)h

ε
) ,

we can obtain

Īh =

∫ xj+1

xj

|u′(x)− ūh ′(x)|2 dx

= 4K2exp(−2

ε
)

[
1

2ε

(
exp(

h

ε
)− 1

)
− 2

h

(
exp(

h

2ε
)− 1

)2
]

· exp(
2jh

ε
)

(
exp(

h

ε
) + 1

)
.

By summing up these results over the whole interval, the error estimation
(3.1) for the hierarchical approximation is established.

We are now ready to show the saturation result for the piecewise
linear hierarchical bases.

Theorem 3.2 Let ūh ∈ V̄h be the finite element solutions by piece-
wise linear hierarchical bases for the problem (1.4). Then the saturation
assumption holds true in the sense that there exists 1/2 ≤ β̄ < 1 inde-
pendent of the mesh size h such that

(3.2) |||u− ūh||| ≤ β̄ |||u− uh||| .



608 Hongchul Kim and Seon-Gyu Kim

Proof. Let us consider the ratio

r̄(h, ε) =
|||u− ūh|||2

|||u− uh|||2
.

Using (2.3), (3.1), and by taking x = h/ε, the ratio is simplified into

r̄(h, ε)

=

[
1

2ε

(
1− exp(−h

ε
)

)
− 2

h

(
1− exp(− h

2ε
)

)2
](

1 + exp(−h
ε

)

)
[

1

2ε

(
1− exp(−2h

ε
)

)
− 1

h

(
1− exp(−h

ε
)

)2
]

=

[
x (1− exp(−x))− 4

(
1− exp(−x

2
)
)2]

(1 + exp(−x))[
x (1− exp(−2x))− 2 (1− exp(−x))2

]
= : R̄(x) .

Simple considerations also give rise that R̄(x) is a strictly increasing
function. Moreover, it is not difficult to check that

lim
x→0+

R̄(x) =
1

4
, lim

x→∞
R̄(x) = 1 .

Whenever h is small enough, we also have a sharper result

β̄2 = 1/4 + o(1)

Therefore, taking advantage from the bound h ≤ 1, we deduce

r̄(h, ε) ≤ β̄2 = R̄

(
1

ε

)
< 1 ,

which completes the theorem.

Using our result, one may also examine the piecewise linear-quadratic
hierarchical bases as in Figure 2 (c). In this case, the following piecewise

quadratic functions φ̃j+ 1
2

are supplemented in the second level

φ̃j+ 1
2
(x) =

 1− 4

(
x− xj+ 1

2

h

)2

xj ≤ x ≤ xj+1 ,

0, else.
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