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STATISTICAL CONVERGENCE FOR GENERAL BETA

OPERATORS

Naokant Deo, Mehmet Ali Özarslan, and Neha Bhardwaj

Abstract. In this paper, we consider general Beta operators, which
is a general sequence of integral type operators including Beta func-
tion. We study the King type Beta operators which preserves the
third test function x2. We obtain some approximation properties,
which include rate of convergence and statistical convergence. Fi-
nally, we show how to reach best estimation by these operators.

1. Introduction

Three classical operators Ln (Bernstein operators, Szász-Mirakjan
operators and Baskakov operators) preserve ei(x) = xi(i = 0, 1), i.e.,
Ln(e0;x) = e0(x) and Ln(e1;x) = e1(x), n ∈ N. For each of these opera-
tors, Ln(e2;x) 6= e2(x) = x2. In the year 2003, J. P. King [10] presented
a non-trivial sequence of positive linear operators Vn : C[0, 1]→ C[0, 1],
given as follows:

Vn (f ;x) =
n∑
k=0

(
n

k

)
(r∗n(x))k(1− r∗n(x))n−kf

(
k

n

)
, 0 ≤ x ≤ 1,
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where r∗n(x) : [0, 1]→ [0, 1], are defined by

r∗n(x) =

{
x2, n=1,

− 1
2(n−1) +

√
n
n−1x

2 + 1
4(n−1)2 , n=2,3,....

This sequence preserves the test functions e0, e2 and Vn (f, x) = r∗n(x)
holds. Replacing r∗n(x) by e1, then we obtain classical Bernstein opera-
tors.

Beta operators were introduced by Lupaş [11] and further modified
and studied by Khan [9], Upreti [15], Divis [5] and others.

The Beta approximation βn(f) to a function f : [0, 1] → R is the
operator:

(1.1) βn (f ;x) =
1

B (nx, n(1− x))

∫ 1

0

tnx−1(1− t)n(1−x)−1f(t)dt

where B(u, v) is the well-known beta probability density function

B(u, v) =

∫ 1

0

tu−1(1− t)v−1dt; u, v > 0,

with the support (0, 1) such that t denotes a value of the random vari-
able T , where n ∈ N, x ∈ (0, 1) and f is any real measurable, Lebesgue
integrable function defined on [0, 1]. When x = 0 or x = 1, then
βn (f, x) = f(x) for all n.

Now the following Lemmas follow from [16], for the operators βn men-
tioned by (1.1).

Lemma 1.1 ( [16]). Let ei(x) = xi, i = 0, 1, 2. Then, for each 0 <
x < 1 and n ∈ N, we have

(i) βn(e0;x) = 1,
(ii) βn(e1;x) = x,

(iii) βn(e2;x) = x(1+nx)
n+1

.

Lemma 1.2 ( [5]). For each 0 < x < 1 and n ∈ N and ϕx(t) = t− x,

we have βn(ϕ2
x;x) = x(1−x)

n+1
.

The aim of this article is to construct a general Beta type opera-
tors including the King type Beta operators which preserves the third
test function x2. We study some approximation properties, which in-
clude rate of convergence and statistical convergence. Finally, we show
how to reach best estimation by these operators than the original Beta
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operators βn (f, x). Note that rate of convergence and statistical con-
vergence of many other approximation operators are available in litera-
tures(See [1], [2], [4], [6], [7], [8], [12], [13], [14]).

2. King Type Beta operators

Let {αn(x)} be a sequence of real-valued continuous functions defined
on [0, 1] with 0 < αn(x) < 1. Now consider a sequence of positive linear
operators:
(2.1)

β̂n (f, x) =
1

B (nαn(x), n(1− αn(x)))

∫ 1

0

tnαn(x)−1(1− t)n(1−αn(x))−1f(t)dt,

where x ∈ [0, 1], f ∈ [0, 1] and n ∈ N(set of natural numbers). If αn(x)
is replaced by e1, then we obtain original beta operators (1.1). Note that

Lemma 2.1. For each 0 ≤ x ≤ 1 and n ∈ N and ϕx(t) := t − x, we
have

(i) β̂n(e0;x) = 1,

(ii) β̂n(e1;x) = αn(x),

(iii) β̂n(e2;x) =
αn(x)(1 + nαn(x))

n+ 1
,

(iv) β̂n(ϕ2
x;x) = (αn(x)− x)2 +

αn(x)(1− αn(x))

n+ 1
.

Now, if we replace αn(x) by

α∗n(x) =
−1 +

√
1 + 4n(n+ 1)x2

2n
, x ∈ [0, 1] and n ∈ N,

then the operators β̂n defined in (2.1) reduce to the operators
(2.2)

β∗n (f ;x) =
1

B (nα∗n(x), n(1− α∗n(x)))

∫ 1

0

tnα
∗
n(x)−1(1− t)n(1−α

∗
n(x))−1f(t)dt.

These operators are the King type Beta operators. Furthermore, the
following Lemma hold:

Lemma 2.2. The operators defined by (2.2) verify the following iden-
tities

(i) β∗n(e0;x) = 1,
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(ii) β∗n(e1;x) =
−1+
√

1+4n(n+1)x2

2n
,

(iii) β∗n(e2;x) = x2.

Lemma 2.3. For each 0 ≤ x ≤ 1 and n ∈ N and ϕx(t) = t − x, we
have

(i) β∗n(ϕx;x) =

√
1+4n(n+1)x2−(1+2nx)

2n
,

(ii) β∗n(ϕ2
x;x) =

(1+2nx)x−x
√

1+4n(n+1)x2

n
.

3. Rate of Convergence

In this section we study the rate of convergence of the operators
β̂n (f ;x) to f(x) by means of the modulus of continuity and Peetre’s
K-functional . For f ∈ C[a, b], the modulus of continuity of f , denoted
by ω (f ; δ), is defined to be

ω (f ; δ) = sup
|y−x|<δ,x,y∈[a,b]

|f(y)− f(x)| .

It is known that for any δ > 0 and x, y ∈ [a, b], we have

|f(y)− f(x)| ≤ ω (f ; δ)

(
|y − x|
δ

+ 1

)
.

Theorem 3.1. For every f ∈ C[0, 1] and 0 ≤ x ≤ 1, we have∣∣∣β̂n (f ;x)− f(x)
∣∣∣ ≤ 2ω (f, δn,x)

where δn,x : =

√
(αn(x)− x)2 +

αn(x)(1− αn(x))

n+ 1
and ω (f, δn,x) is the

modulus of continuity of f .

Proof. Let f ∈ C[0, 1] and x ∈ [0, 1]. Since β̂n(e0, x) = e0(x), from
Cauchy-Schwarz inequality for linear positive operators, we obtain for
every δ > 0 and n ∈ N, that∣∣∣β̂n(f ;x)− f(x)

∣∣∣ ≤ [β̂n(e0;x) +
1

δn,x

(
β̂n
(
(e1 − x)2;x

))1/2]
ω (f, δn,x) .

Choosing δn,x =
√
β̂n
(
(e1 − x)2;x

)
=

√
(αn(x)− x)2 +

αn(x)(1− αn(x))

n+ 1
,

we obtain



Statistical convergence for General Beta Operators 675

∣∣∣β̂n(f ;x)− f(x)
∣∣∣ ≤ 2ω (f, δn,x) .

For the King type Beta operators we have the following Corollary at
once:

Corollary 3.2. For every f ∈ C[0, 1] and 0 ≤ x ≤ 1, we have

|β∗n (f ;x)− f(x)| ≤ 2ω (f, δn,x)

where δn,x =

√
(1+2nx)x−x

√
1+4n(n+1)x2

n
.

Now we give the rate of convergence for the operators β̂n (f ;x) by us-
ing the Peetre’s K-functional in the space C2[0, 1]. We recall some defi-
nitions and notations. The classical Peetre’s K−functional of a function
f ∈ C[0, 1] is defined by

K (f, δ) = inf
{
‖f − g‖C[0,1]+δ ‖g

′′‖C[0,1]: g ∈ C
2[0, 1]

}
, δ > 0

where C2[0, 1] = {g ∈ C[0, 1] : g′, g′′ ∈ C2[0, 1]}.
and the norm

‖f‖C2[0,1] = ‖f‖C[0,1] + ‖f ′‖C[0,1] + ‖f ′′‖C[0,1].

Theorem 3.3. For each f ∈ C[0, 1]∣∣∣β̂n (f ;x)− f(x)
∣∣∣

≤ K

(
f ;

(
|αn(x)− x|+

∣∣∣∣(αn(x)− x)2 +
αn(x)(1− αn(x))

n+ 1

∣∣∣∣)) .
Proof. Applying Taylor expansion to the function g ∈ C2[0, 1], we get

β̂n(g, x)−g(x) = g′(x)β̂n((e1−x), x)+
1

2
β̂n
(
g′′(ξ)(e1 − x)2, x

)
; ξ ∈ (t, x).

Hence∣∣∣β̂n (g;x)− g(x)
∣∣∣

≤ ‖g′‖C[0,1]

∣∣∣β̂n((e1 − x), x)
∣∣∣+ ‖g′′‖C[0,1]

∣∣∣β̂n((e1 − x)2, x)
∣∣∣

= ‖g′‖C[0,1] |αn(x)− x|+ ‖g′′‖C[0,1]

∣∣∣∣(αn(x)− x)2 +
αn(x)(1− αn(x))

n+ 1

∣∣∣∣ .
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For each f ∈ C[0, 1], we can write∣∣∣β̂n(f, x)− f(x)
∣∣∣

≤
∣∣∣β̂n (f, x)− β̂n (g, x)

∣∣∣+
∣∣∣β̂n(g, x)− g(x)

∣∣∣+ |g − f |

≤ 2 ‖g − f‖C[0,1] +
∣∣∣β̂n (g;x)− g(x)

∣∣∣
≤ 2‖g − f‖C[0,1]

+

(
|αn(x)− x|+

∣∣∣∣(αn(x)− x)2 +
αn(x)(1− αn(x))

n+ 1

∣∣∣∣) ‖g′′‖C[0,1]

≤ 2

(
‖g − f‖C[0,1]+ |αn(x)− x|

+

∣∣∣∣(αn(x)− x)2 +
αn(x)(1− αn(x))

n+ 1

∣∣∣∣ ‖g′′‖
C[0,1]

)
Taking infimum over g ∈ C2[0, 1], we get∣∣∣β̂n(f, x)− f(x)

∣∣∣
≤ K

(
f ;

(
|αn(x)− x|+

∣∣∣∣(αn(x)− x)2 +
αn(x)(1− αn(x))

n+ 1

∣∣∣∣)) .
For the King type Beta operators we immediately have the following

Corollary:

Corollary 3.4. For each f ∈ C[0, 1]∣∣∣β̂n (f ;x)− f(x)
∣∣∣ ≤ K

(
f ; γn,x

)
,

where γn,x = 1
2n

(2x− 1)
(
2nx−

√
4n2x2 + 4nx2 + 1 + 1

)
.

4. Statistical convergence

In this part of the paper, we use concept of statistical convergence
and study the Korovkin type approximation theorem for the operators
β̂n. Before we present the main results, we shall recall some notation on
the statistical convergence.
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Let M be any subset of N. The density of M is defined by

δ (M) = lim
n

1

n

n∑
j=1

χM(j)

provided the limit exists, where χM is the characteristic function of M .
A sequence x = (xk) is said to be statistical convergence to the number
l,

δ {k ∈N: |xk − l| ≥ ε} = 0

for every ε > 0 or equivalently there exists a subset K ⊆ N with δ (K) =
1 and n0(ε) such that k > n0 and k ∈ K imply that |xk − l| < ε. We
write

st− lim
n
xk = l

Assume that for each x ∈ [0, 1],(αn(x))n∈N is a sequence in (0, 1)
satisfying

(4.1) st− lim
n
αn(x) = x.

Then we have

(4.2) st− lim
n
|x− αn(x)| = 0,

and

(4.3) st− lim
n

∣∣∣∣αn(x)(1− αn(x))

n+ 1

∣∣∣∣ = 0.

Such a sequence (αn(x))n∈N can be constructed as follows. Choose

αn(x) =

{
2 , if n = m2 (m ∈ N)

α∗n(x) , otherwise

where

α∗n(x) =
−1 +

√
1 + 4n(n+ 1)x2

2n
, x ∈ [0, 1] and n ∈ N.

It is clear that (4.1) is satisfied.

Theorem 4.1. For each x ∈ [0, 1] and for every f ∈ C[0, 1], we have

st− lim
n

∣∣∣β̂n (f ;x)− f(x)
∣∣∣ = 0.
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Proof. For a given r > 0 choose ε > 0 such that ε < r. Now define
the sets:

U :=
{
n : δ2n,x ≥ r

}
,

U1 :=

{
n : |x− αn(x)| ≥

√
r − ε

2

}
,

U2 :=

{
n :

∣∣∣∣αn(x)(1− αn(x))

n+ 1

∣∣∣∣ ≥ r − ε
2

}
,

where δn,x :=

√
(αn(x)− x)2 +

αn(x)(1− αn(x))

n+ 1
. Then it follows that

U ⊆ U1 ∪ U2, which gives

(4.4)
n∑
j=1

χU(j) ≤
n∑
j=1

χU1(j)+
n∑
j=1

χU2(j)

Multiplying both sides of (4.4) by
1

n
and letting n → ∞, we get using

(4.2) and (4.3) that

lim
n→∞

n∑
j=1

χU(j) = 0.

This guarantees that st−limn δ
2
n,x = 0 which implies st−limn ω(f, δn,x) =

0 .Using Theorem 3.1 completes the proof.

Remark 4.2. If we choose the sequence (αn(x))n∈N as in (4.1), then
our statistical approximation result (Theorem 4.1) works; however its
classical version does not work since

αn(x) 9 x

in the usual sense.

5. Best Error Estimation

Let ψx be the first central moment function defined by ψx(y) = y−x.
In order to get a better error estimation on a subinterval I of [0, 1], in
the approximation by means of the operators βn , we are aimed to find
a functional sequence (sn), sn : I → A, satisfying

(5.1) δ∗n,x :=

√
β̂n(ψ2

x;un(x)) ≤
√
βn(ψ2

x;x) =: δn,x for x ∈ I.
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By Lemmas 1.2 and 2.1 (d), (5.1) takes the form

(5.2)
n

n+ 1
s2n(x) +

(
1

n+ 1
− 2x

)
sn(x)− (

n

n+ 1
− 2)x2− 1

n+ 1
x ≤ 0.

Let

∆n(x) :=

(
1

n+ 1
− 2x

)2

+ 4
n

n+ 1

{
(

n

n+ 1
− 2)x2 +

1

n+ 1
x

}
.

Then it is clear that

(5.3) ∆n(x) ≥ 0

and

(5.4) x+
x

n
− 1

2n
∈ [0, 1]

hold for every x ∈ I = [1
4
, 3
4
] and for every n ≥ 1. Therefore, from (5.2),

(5.3) and (5.4), we get

2x− 1
n+1
−
√

∆n(x)

2 n
n+1

≤ sn(x) ≤
2x− 1

n+1
+
√

∆n(x)

2 n
n+1

.

Then sn(x) takes its minimum when

sn(x) := x+
x

n
− 1

2n
.

Therefore, for all x ∈ [1
4
, 3
4
], we define a new Beta type operator by

βsn(f ;x) = βn(f ; sn(x))

=
1

B (nsn(x), n(1− sn(x)))

∫ 1

0

tnsn(x)−1(1− t)n(1−sn(x))−1f(t)dt.

Then, for all x ∈ [1
4
, 3
4
] and n ≥ 1, we have

βsn(ψ2
x;x) =

x(1− x)

n
− 1

4n(n+ 1)
≤ x(1− x)

n+ 1
= βn(ψ2

x;x)

which shows that the operators βsn(f ;x) provides the better estimation
than the operators βn(f ;x).
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