Korean J. Math. **22** (2014), No. 4, pp. 683–691 http://dx.doi.org/10.11568/kjm.2014.22.4.683

REDEFINED FUZZY CONGRUENCES ON SEMIGROUPS

INHEUNG CHON

ABSTRACT. We redefine a fuzzy congruence, discuss some properties of the fuzzy congruences, find the fuzzy congruence generated by a fuzzy relation on a semigroup, and give some lattice theoretic properties of the fuzzy congruences on semigroups.

1. Introduction

The concept of a fuzzy relation was first proposed by Zadeh ([8]). Subsequently, many researchers ([2], [7], [5], [4]) studied fuzzy relations in various contexts. The original definition of a reflexive fuzzy relation μ on a set X was $\mu(x, x) = 1$ for all $x \in X$, which seemed to be too strong. Gupta et al. ([3]) suggested a G-reflexive fuzzy relation by generalizing the definition, defined a fuzzy G-equivalence relation, and developed some properties of that relation. Chon ([1]) defined a generalized fuzzy congruence using the G-reflexive fuzzy relation and characterized that congruence. However the generalized fuzzy congruence turned out not to have some crucial properties (see [1]) such that the congruence on a semigroup is not always generated by a fuzzy relation and the collection of all those congruences is not a complete lattice. In this note, we suggest a new reflexive fuzzy relation as $\mu(x, x) \geq \epsilon > 0$ for all $x \in X$ and

Received July 26, 2014. Revised December 11, 2014. Accepted December 11, 2014.

²⁰¹⁰ Mathematics Subject Classification: 03E72.

Key words and phrases: fuzzy equivalence relation, fuzzy congruence.

This work was supported by a research grant from Seoul Women's University (2013).

[©] The Kangwon-Kyungki Mathematical Society, 2014.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

 $\inf_{t \in X} \mu(t,t) \ge \mu(y,z)$ for all $y \ne z \in X$, define a fuzzy congruence, and show that the redefined fuzzy congruence has those crucial properties which the generalized fuzzy congruence does not have. Also our work may be considered as a generalization of the studies which Samhan ([6]) performed based on the original reflexive fuzzy relation.

In section 2 we redefine a fuzzy congruence and review some basic definitions and properties of fuzzy relations which will be used in the next section. In section 3 we discuss some basic properties of the fuzzy congruences, find the fuzzy congruence generated by a fuzzy relation on a semigroup, show that the collection C(S) of all fuzzy congruences on a semigroup S is a complete lattice, and show that if S is a group, then $C_k(S) = \{\mu \in C(S) : \mu(c, c) = k \text{ for all } c \in S\}$ is a modular lattice for $0 < \epsilon \leq k \leq 1$.

2. Preliminaries

We redefine a fuzzy congruence and recall some properties of fuzzy relations which will be used in the next section.

DEFINITION 2.1. A function B from a set X to the closed unit interval [0, 1] in \mathbb{R} is called a *fuzzy subset* of X. For every $x \in X$, B(x) is called a *membership grade* of x in B. A *fuzzy relation* μ in a set Z is a fuzzy subset of $Z \times Z$.

The original definition of a fuzzy reflexive relation μ in a set X was $\mu(x, x) = 1$ for all $x \in X$. Gupta et al. ([3]) defined a G-reflexive fuzzy relation μ in a set X by $\mu(x, x) > 0$ for all $x \in X$ and $\inf_{t \in X} \mu(t, t) \ge \mu(x, y)$ for all $x, y \in X$ such that $x \neq y$. But the fuzzy congruence defined from the G-fuzzy reflexive relation does not have some crucial properties (see [1]). We redefine the fuzzy congruence for a settlement of these problems.

DEFINITION 2.2. Let μ be a fuzzy relation in a set X. μ is reflexive in X if $\mu(x, x) \ge \epsilon > 0$ and $\inf_{t \in X} \mu(t, t) \ge \mu(x, y)$ for all $x, y \in X$ such that $x \ne y$. μ is symmetric in X if $\mu(x, y) = \mu(y, x)$ for all x, y in X. The composition $\lambda \circ \mu$ of two fuzzy relations λ, μ in X is the fuzzy subset of $X \times X$ defined by

$$(\lambda \circ \mu)(x, y) = \sup_{z \in X} \min(\lambda(x, z), \mu(z, y)).$$

A fuzzy relation μ in X is *transitive* in X if $\mu \circ \mu \subseteq \mu$. A fuzzy relation μ in X is called a *fuzzy equivalence relation* if μ is reflexive, symmetric, and transitive.

Let \mathcal{F}_X be the set of all fuzzy relations in a set X. Then it is easy to see that the composition \circ is associative, \mathcal{F}_X is a monoid under the operation of composition \circ , and a fuzzy equivalence relation is an idempotent element of \mathcal{F}_X .

DEFINITION 2.3. Let μ be a fuzzy relation in a set X. μ is called fuzzy left (right) compatible if $\mu(x, y) \leq \mu(zx, zy)$ ($\mu(x, y) \leq \mu(xz, yz)$) for all $x, y, z \in X$. A fuzzy equivalence relation on X is called a fuzzy left congruence (right congruence) if it is fuzzy left compatible (right compatible). A fuzzy equivalence relation on X is called a fuzzy congruence if it is a fuzzy left and right congruence.

DEFINITION 2.4. Let μ be a fuzzy relation in a set X. μ^{-1} is defined as a fuzzy relation in X by $\mu^{-1}(x, y) = \mu(y, x)$.

It is easy to see that $(\mu \circ \nu)^{-1} = \nu^{-1} \circ \mu^{-1}$ for fuzzy relations μ and ν . The following Proposition 2.5, Proposition 2.6, and Proposition 2.7 are due to Samhan ([6]).

PROPOSITION 2.5. Let μ be a fuzzy relation on a set X. Then $\bigcup_{n=1}^{\infty} \mu^n$ is the smallest transitive fuzzy relation on X containing μ , where $\mu^n = \mu \circ \mu \circ \cdots \circ \mu$.

Proof. See Proposition 2.3 of [6].

PROPOSITION 2.6. Let μ be a fuzzy relation on a set X. If μ is symmetric, then so is $\bigcup_{n=1}^{\infty} \mu^n$, where $\mu^n = \mu \circ \mu \circ \cdots \circ \mu$.

Proof. See Proposition 2.4 of [6].

PROPOSITION 2.7. If μ is a fuzzy relation on a semigroup S that is fuzzy left and right compatible, then so is $\bigcup_{n=1}^{\infty} \mu^n$, where $\mu^n = \mu \circ \mu \circ \cdots \circ \mu$.

Proof. See Proposition 3.6 of [6].

PROPOSITION 2.8. Let μ and each ν_i be fuzzy relations in a set X for all $i \in I$. Then $\mu \circ (\bigcap_{i \in I} \nu_i) \subseteq \bigcap_{i \in I} (\mu \circ \nu_i)$ and $(\bigcap_{i \in I} \nu_i) \circ \mu \subseteq \bigcap_{i \in I} (\nu_i \circ \mu)$.

Proof. Straightforward.

685

PROPOSITION 2.9. If μ is a reflexive fuzzy relation on a set X, then $\mu^{n+1}(x,y) \ge \mu^n(x,y)$ for all natural numbers n and all $x, y \in X$.

Proof. Straightforward.

 \square

3. Redefined fuzzy congruences on semigroups

In this section we develop some basic properties of the fuzzy congruences, find the fuzzy congruence generated by a fuzzy relation on a semigroup, and give some lattice theoretic properties of fuzzy congruences.

PROPOSITION 3.1. Let μ be a fuzzy relation on a set S. If μ is reflexive, then so is $\bigcup_{n=1}^{\infty} \mu^n$, where $\mu^n = \mu \circ \mu \circ \cdots \circ \mu$.

Proof. Clearly $\mu^1 = \mu$ is reflexive. Suppose that μ^k is reflexive. Then $\mu^{k+1}(x,x) \ge \mu^k(x,x) \ge \epsilon > 0$ for all $x \in S$ by Proposition 2.9. The remaining part of the proof is exactly same as that of Proposition 3.1 in [1].

PROPOSITION 3.2. Let μ and ν be fuzzy congruences in a set X. Then $\mu \cap \nu$ is a fuzzy congruence.

Proof. It is clear from Proposition 2.8.

It is easy to see that even though μ and ν are fuzzy congruences, $\mu \cup \nu$ is not necessarily a fuzzy congruence. We find the fuzzy congruence generated by $\mu \cup \nu$ in the following proposition.

PROPOSITION 3.3. Let μ and ν be fuzzy congruences on a semigroup S. Then the fuzzy congruence generated by $\mu \cup \nu$ in S is $\bigcup_{n=1}^{\infty} (\mu \cup \nu)^n = (\mu \cup \nu) \cup [(\mu \cup \nu) \circ (\mu \cup \nu)] \cup \ldots$

Proof. Clearly $(\mu \cup \nu)(x, x) \ge \epsilon > 0$ for all $x \in S$. The remaining part of the proof is exactly same as that of Proposition 3.3 in [1]. \Box

We now turn to the characterization of the fuzzy congruence generated by a fuzzy relation on a semigroup.

DEFINITION 3.4. Let μ be a fuzzy relation on a semigroup S and let $S^1 = S \cup \{e\}$, where e is the identity of S. We define the fuzzy relation

 μ^* on S as

$$\mu^*(x,y) = \bigcup_{\substack{c,d \in S^1, \\ cad = x, \\ cbd = y}} \mu(a,b) \text{ for all } x, y \in S.$$

PROPOSITION 3.5. Proposition 3.5 Let μ and ν be two fuzzy relations on a semigroup S. Then

(1) $\mu \subseteq \mu^{*}$ (2) $(\mu^{*})^{-1} = (\mu^{-1})^{*}$ (3) If $\mu \subseteq \nu$, then $\mu^{*} \subseteq \nu^{*}$ (4) $(\mu \cup \nu)^{*} = \mu^{*} \cup \nu^{*}$ (5) $\mu = \mu^{*}$ if and only if μ is fuzzy left and right compatible (6) $(\mu^{*})^{*} = \mu^{*}$

Proof. See Proposition 3.5 of [6].

The generalized fuzzy congruence in a semigroup is not always generated by a fuzzy relation (see Theorem 3.6 of [1]). We show that the fuzzy congruence on a semigroup, which is newly defined in this note, is always generated by a fuzzy relation.

THEOREM 3.6. Let μ be a fuzzy relation on a semigroup S. Then the fuzzy congruence generated by μ is

$$\begin{cases} \bigcup_{n=1}^{\infty} \ [\mu^* \cup (\mu^*)^{-1} \cup \theta^*]^n, & \text{if } \mu(x,y) > 0 \text{ for some } x \neq y \in S \\ \bigcup_{n=1}^{\infty} \ (\mu^* \cup \zeta^*)^n, & \text{if } \mu(x,y) = 0 \text{ for all } x \neq y \in S \end{cases}$$

where $\theta(z, z) = \max [\sup_{\substack{x \neq y \in S \\ x \neq y \in S}} \mu(x, y), \epsilon]$ for all $z \in S$, $\theta = \theta^{-1}, \theta(x, y) \leq \mu(x, y)$ for all $x, y \in S$ with $x \neq y, \zeta(z, z) = \epsilon$ for all $z \in S, \zeta(x, y) = 0$ for all $x \neq y \in S$, and μ^*, θ^* , and ζ^* are fuzzy relation on S defined in Definition 3.4.

Proof. We consider the case that $\mu(x, y) > 0$ for some $x \neq y \in S$. Let $\mu_1 = \mu^* \cup (\mu^*)^{-1} \cup \theta^*$. Then $\mu_1(z, z) \geq \theta^*(z, z) \geq \theta(z, z) \geq \epsilon > 0$ for all $z \in S$. Let $S^1 = S \cup \{e\}$, where e is the identity of S. Since $x \neq y$ implies $a \neq b$ in Definition 3.4, $\mu^*(x, y) \leq \sup_{x \neq y \in S} \mu(x, y) \leq \theta(t, t)$ for all $t \in S$. Since $\theta(x, y) \leq \mu(x, y), \theta^*(x, y) \leq \mu^*(x, y)$ by (3) of Proposition 3.5. That is,

$$\inf_{t \in S} \mu_1(t, t) \ge \inf_{t \in S} \theta^*(t, t) \ge \theta(t, t) \ge \mu^*(x, y) \ge \theta^*(x, y)$$

Since $\inf_{t\in S} \mu_1(t,t) \ge \theta(t,t) \ge \mu^*(y,x)$, $\inf_{t\in S} \mu_1(t,t) \ge (\mu^*)^{-1}(x,y)$. Thus $\inf_{t\in S} \mu_1(t,t) \ge \max[\mu^*(x,y), \ (\mu^*)^{-1}(x,y), \ \theta^*(x,y)] = \mu_1(x,y).$

That is, μ_1 is reflexive. By Proposition 3.1, $\bigcup_{n=1}^{\infty} \mu_1^n$ is reflexive. Since $\theta = \theta^{-1}, \ \theta^* = (\theta^{-1})^* = (\theta^*)^{-1}$ by (2) of Proposition 3.5, and hence

$$\mu_1(x,y) = \max\left[(\mu^*)^{-1}(y,x), \mu^*(y,x), (\theta^*)^{-1}(x,y)\right] = \mu_1(y,x).$$

Thus μ_1 is symmetric. By Proposition 2.6, $\bigcup_{n=1}^{\infty} \mu_1^n$ is symmetric. By Proposition 2.5, $\bigcup_{n=1}^{\infty} \mu_1^n$ is transitive. Hence $\bigcup_{n=1}^{\infty} \mu_1^n$ is a fuzzy equivalence relation containing μ . By (2), (4), and (6) of Proposition 3.5,

$$\mu_1^* = (\mu^* \cup (\mu^*)^{-1} \cup \theta^*)^* = (\mu^* \cup (\mu^{-1})^* \cup \theta^*)^* = (\mu^*)^* \cup ((\mu^{-1})^*)^* \cup (\theta^*)^*$$
$$= \mu^* \cup (\mu^{-1})^* \cup \theta^* = \mu^* \cup (\mu^*)^{-1} \cup \theta^* = \mu_1.$$

Thus μ_1 is fuzzy left and right compatible by (5) of Proposition 3.5. By Proposition 2.7, $\bigcup_{n=1}^{\infty} \mu_1^n$ is fuzzy left and right compatible. Thus $\bigcup_{n=1}^{\infty} \mu_1^n$ is a fuzzy congruence containing μ . Let ν be a fuzzy congruence containing μ . Then $(\mu \cup \mu^{-1} \cup \theta)(x, y) \leq \nu(x, y)$ for all $x, y \in S$ such that $x \neq y$. Since $\theta(a, a) = \max [\sup_{\substack{x \neq y \in S \\ x \neq y \in S}} \mu(x, y), \epsilon] \leq \nu(a, a)$ for all $a \in S$, $\max [\mu(a, a), \mu^{-1}(a, a), \theta(a, a)] \leq \nu(a, a)$ for all $a \in S$. Thus $\mu \cup \mu^{-1} \cup \theta \subseteq \nu$. By (2), (3), and (4) of Proposition 3.5,

$$\mu_{1} = \mu^{*} \cup (\mu^{*})^{-1} \cup \theta^{*} = \mu^{*} \cup (\mu^{-1})^{*} \cup \theta^{*} = (\mu \cup \mu^{-1} \cup \theta)^{*} \subseteq \nu^{*}.$$

Since ν is fuzzy left and right compatible, $\nu = \nu^*$ by (5) of Proposition 3.5. Thus $\mu_1 \subseteq \nu$. Suppose $\mu_1^k \subseteq \nu$. Then

$$\mu_1^{k+1}(b,c) = (\mu_1^k \circ \mu_1)(b,c) = \sup_{d \in S} \min[\mu_1^k(b,d), \mu_1(d,c)]$$

$$\leq \sup_{d \in S} \min[\nu(b,d), \nu(d,c)] = (\nu \circ \nu)(b,c)$$

for all $b, c \in S$. That is, $\mu_1^{k+1} \subseteq (\nu \circ \nu)$. Since ν is transitive, $\mu_1^{k+1} \subseteq \nu$. By the mathematical induction, $\mu_1^n \subseteq \nu$ for every natural number n. Thus

$$\bigcup_{n=1}^{\infty} \left[\mu^* \cup (\mu^*)^{-1} \cup \theta^*\right]^n = \bigcup_{n=1}^{\infty} \mu_1^n = \mu_1 \cup (\mu_1 \circ \mu_1) \cup (\mu_1 \circ \mu_1 \circ \mu_1) \cdots \subseteq \nu.$$

We consider the case that $\mu(x, y) = 0$ for all $x \neq y \in S$. Let $\mu_2 = \mu^* \cup \zeta^*$. Then $\mu_2(a, a) \geq \epsilon > 0$ for all $a \in S$. Let $S^1 = S \cup \{e\}$, where e is the identity of S. Since $x \neq y$ implies $a \neq b$ in Definition 3.4,

 $\mu^*(x,y) = 0$ and $\zeta^*(x,y) = 0$ from $\mu(x,y) = 0$ and $\zeta(x,y) = 0$. That is, $(\mu^* \cup \zeta^*)(x,y) < \zeta(t,t)$ for all $t \in S$. Thus

$$\inf_{t \in S} \mu_2(t,t) \ge \inf_{t \in S} \zeta^*(t,t) \ge \zeta(t,t) > \max[\mu^*(x,y), \ \zeta^*(x,y)] = \mu_2(x,y).$$

Hence μ_2 is reflexive. By Proposition 3.1, $\bigcup_{n=1}^{\infty} \mu_2^n$ is reflexive. Since $\mu^*(x,y) = 0$ and $\zeta^*(x,y) = 0$, μ_2 is symmetric. By Proposition 2.6, $\bigcup_{n=1}^{\infty} \mu_2^n$ is symmetric. By Proposition 2.5, $\bigcup_{n=1}^{\infty} \mu_2^n$ is transitive. Hence $\bigcup_{n=1}^{\infty} \mu_2^n$ is a fuzzy equivalence relation containing μ . The proof of the remaining parts is similar to that of the above case.

We now turn to the lattice theoretic properties of fuzzy congruences. For the collection $\{\mu_j : j \in J\}$ of all generalized fuzzy congruences on a semigroup S with a relation \lesssim defined in Proposition 3.7, it is easy to see that $(\{\mu_j : j \in J\}, \lesssim)$ is not a complete lattice since $\inf_{j \in J} \mu_j$ does not exist (see [1]). In next proposition, we show that the collection of the redefined fuzzy congruences is a complete lattice.

PROPOSITION 3.7. Let C(S) be the collection of all fuzzy congruences on a semigroup S. Then $(C(S), \leq)$ is a complete lattice, where \leq is a relation on the set of all fuzzy congruences on S defined by $\mu \leq \nu$ iff $\mu(x, y) \leq \nu(x, y)$ for all $x, y \in S$.

Proof. Clearly \leq is a partial order relation. It is easy to check that the relation σ defined by $\sigma(x, y) = 1$ for all $x, y \in S$ is in C(S) and the relation λ defined by $\lambda(x, y) = \epsilon$ for x = y and $\lambda(x, y) = 0$ for $x \neq y$ is in C(S). Also σ is the greatest element and λ is the least element of C(S)with respect to the ordering \leq . Let $\{\mu_j\}_{j\in J}$ be a non-empty collection of fuzzy congruences in C(S). Let $\mu(x, y) = \inf_{j\in J} \mu_j(x, y)$ for all $x, y \in S$. Clearly $\mu(x, x) \geq \epsilon$ for all $x \in S$, $\inf_{t\in X} \mu(t, t) \geq \mu(y, z)$ for all $y \neq z \in X$, $\mu = \mu^{-1}, \mu(x, y) \leq \mu(zx, zy)$, and $\mu(x, y) \leq \mu(xz, yz)$ for all $x, y, z \in S$. It is easy to see that $\mu \circ \mu \subseteq \mu$ (see Proposition 6.1 of [4]). That is, $\mu \in C(S)$. Since μ is the greatest lower bound of $\{\mu_j\}_{j\in J}, (C(S), \leq)$ is a complete lattice. \Box

We define a join \lor and a meet \land on C(S) by $\mu \lor \nu = \langle \mu \cup \nu \rangle_c$ and $\mu \land \nu = \mu \cap \nu$, where $\langle \mu \cup \nu \rangle_c$ is the fuzzy congruence generated by $\mu \cup \nu$. It is clear that if $\mu, \nu \in C(S)$, then $\mu \land \nu \in C(S)$ and $\mu \lor \nu \in C(S)$ from Proposition 3.2 and Proposition 3.3, respectively. Let

 $C_k(S) = \{\mu \in C(S) : \mu(c,c) = k \text{ for all } c \in S\}.$ Then it is easy to see that $(C_k(S), \vee, \wedge)$ is a sublattice of C(S) for $0 < \epsilon \le k \le 1$.

DEFINITION 3.8. A lattice (L, \lor, \land) is called *modular* if $(x \lor y) \land z \le x \lor (y \land z)$ for all $x, y, z \in L$ with $x \le z$.

LEMMA 3.9. Let μ and ν be fuzzy congruences on a semigroup S such that $\mu(c, c) = \nu(c, c)$ for all $c \in S$. If $\mu \circ \nu = \nu \circ \mu$, then $\mu \circ \nu$ is the fuzzy congruence on S generated by $\mu \cup \nu$.

Proof. $(\mu \circ \nu)(a, a) = \sup_{z \in S} \min [\mu(a, z), \nu(z, a)] \ge \min[\mu(a, a), \nu(a, a)] \ge \epsilon > 0$ for all $a \in S$. The remaining part of the proof is same as that of Lemma 4.3 in [1].

THEOREM 3.10. Let S be a semigroup and let H be a sublattice of $(C_k(S), \lor, \land)$ such that $\mu \circ \nu = \nu \circ \mu$ for all $\mu, \nu \in H$. Then H is a modular lattice for $0 < \epsilon \leq k \leq 1$.

Proof. Let $\mu, \nu, \rho \in H$ with $\mu \leq \rho$. Let $x, y \in S$. Then it is straightforward (see Theorem 4.5 of [6]) that $(\mu \circ \nu) \land \rho \leq \mu \circ (\nu \land \rho)$. Since $\mu, \nu \in C_k(S), \ \mu(c,c) = \nu(c,c) = k$ for all $c \in S$. By Lemma 3.9, $\mu \circ \nu$ is the fuzzy congruence generated by $\mu \cup \nu$. That is, $\mu \lor \nu = \mu \circ \nu$. Thus $(\mu \lor \nu) \land \rho \leq \mu \circ (\nu \land \rho)$. Since H is a sublattice and $\rho, \nu \in H, \nu \land \rho \in H$. Since $\mu \in H$ and $\nu \land \rho \in H, \ \mu \circ (\nu \land \rho) = (\nu \land \rho) \circ \mu$. Also $(\nu \land \rho)(c,c) = k$ and $\mu(c,c) = k$ for all $c \in S$. By Lemma 3.9, $\mu \circ (\nu \land \rho)$ is the fuzzy congruence generated by $\mu \cup (\nu \land \rho)$. That is, $\mu \circ (\nu \land \rho) = \mu \lor (\nu \land \rho)$. Thus $(\mu \lor \nu) \land \rho \leq \mu \lor (\nu \land \rho)$. Hence H is modular. \Box

COROLLARY 3.11. If S is a group and $0 < \epsilon \leq k \leq 1$, then $(C_k(S), \lor, \land)$ is a modular lattice.

Proof. It is easy to see that if S is a group, then $\mu \circ \nu = \nu \circ \mu$ for all $\mu, \nu \in C_k(S)$ (see Proposition 4.3 of [6]). By Theorem 3.10, $(C_k(S), \lor, \land)$ is modular.

References

- I. Chon, Generalized fuzzy congruences on semigroups, Korean J. Math. 18 (2010), 343–356.
- [2] J. A. Goguen, L-fuzzy sets, J. Math. Anal. Appl. 18 (1967), 145–174.
- [3] K. C. Gupta and R. K. Gupta, *Fuzzy equivalence relation redefined*, Fuzzy Sets and Systems **79** (1996), 227–233.

Redefined fuzzy congruences on semigroups

- [4] V. Murali, Fuzzy equivalence relation, Fuzzy Sets and Systems 30 (1989), 155– 163.
- [5] C. Nemitz, Fuzzy relations and fuzzy function, Fuzzy Sets and Systems 19 (1986), 177–191.
- [6] M. Samhan, Fuzzy congruences on semigroups, Inform. Sci. 74 (1993), 165–175.
- [7] E. Sanchez, Resolution of composite fuzzy relation equation, Inform. and Control 30 (1976), 38–48.
- [8] L. A. Zadeh, Fuzzy sets, Inform. and Control 8 (1965), 338–353.

Inheung Chon Department of Mathematics Seoul Women's University Seoul 139-774, Korea *E-mail*: ihchon@swu.ac.kr