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REDEFINED FUZZY CONGRUENCES ON

SEMIGROUPS

Inheung Chon

Abstract. We redefine a fuzzy congruence, discuss some properties
of the fuzzy congruences, find the fuzzy congruence generated by
a fuzzy relation on a semigroup, and give some lattice theoretic
properties of the fuzzy congruences on semigroups.

1. Introduction

The concept of a fuzzy relation was first proposed by Zadeh ([8]).
Subsequently, many researchers ([2], [7], [5], [4]) studied fuzzy relations
in various contexts. The original definition of a reflexive fuzzy relation µ
on a set X was µ(x, x) = 1 for all x ∈ X, which seemed to be too strong.
Gupta et al. ([3]) suggested a G-reflexive fuzzy relation by generalizing
the definition, defined a fuzzy G-equivalence relation, and developed
some properties of that relation. Chon ([1]) defined a generalized fuzzy
congruence using the G-reflexive fuzzy relation and characterized that
congruence. However the generalized fuzzy congruence turned out not
to have some crucial properties (see [1]) such that the congruence on a
semigroup is not always generated by a fuzzy relation and the collection
of all those congruences is not a complete lattice. In this note, we suggest
a new reflexive fuzzy relation as µ(x, x) ≥ ε > 0 for all x ∈ X and
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inf
t∈X

µ(t, t) ≥ µ(y, z) for all y 6= z ∈ X, define a fuzzy congruence, and

show that the redefined fuzzy congruence has those crucial properties
which the generalized fuzzy congruence does not have. Also our work
may be considered as a generalization of the studies which Samhan ([6])
performed based on the original reflexive fuzzy relation.

In section 2 we redefine a fuzzy congruence and review some basic
definitions and properties of fuzzy relations which will be used in the
next section. In section 3 we discuss some basic properties of the fuzzy
congruences, find the fuzzy congruence generated by a fuzzy relation on
a semigroup, show that the collection C(S) of all fuzzy congruences on
a semigroup S is a complete lattice, and show that if S is a group, then
Ck(S) = {µ ∈ C(S) : µ(c, c) = k for all c ∈ S} is a modular lattice for
0 < ε ≤ k ≤ 1.

2. Preliminaries

We redefine a fuzzy congruence and recall some properties of fuzzy
relations which will be used in the next section.

Definition 2.1. A function B from a set X to the closed unit interval
[0, 1] in R is called a fuzzy subset of X. For every x ∈ X, B(x) is called
a membership grade of x in B. A fuzzy relation µ in a set Z is a fuzzy
subset of Z × Z.

The original definition of a fuzzy reflexive relation µ in a set X was
µ(x, x) = 1 for all x ∈ X. Gupta et al. ([3]) defined a G-reflexive fuzzy
relation µ in a set X by µ(x, x) > 0 for all x ∈ X and inf

t∈X
µ(t, t) ≥ µ(x, y)

for all x, y ∈ X such that x 6= y. But the fuzzy congruence defined from
the G-fuzzy reflexive relation does not have some crucial properties (see
[1]). We redefine the fuzzy congruence for a settlement of these problems.

Definition 2.2. Let µ be a fuzzy relation in a set X. µ is reflexive in
X if µ(x, x) ≥ ε > 0 and inf

t∈X
µ(t, t) ≥ µ(x, y) for all x, y ∈ X such that

x 6= y. µ is symmetric in X if µ(x, y) = µ(y, x) for all x, y in X. The
composition λ ◦ µ of two fuzzy relations λ, µ in X is the fuzzy subset of
X ×X defined by

(λ ◦ µ)(x, y) = sup
z∈X

min(λ(x, z), µ(z, y)).
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A fuzzy relation µ in X is transitive in X if µ ◦ µ ⊆ µ. A fuzzy relation
µ in X is called a fuzzy equivalence relation if µ is reflexive, symmetric,
and transitive.

Let FX be the set of all fuzzy relations in a set X. Then it is easy to
see that the composition ◦ is associative, FX is a monoid under the oper-
ation of composition ◦, and a fuzzy equivalence relation is an idempotent
element of FX .

Definition 2.3. Let µ be a fuzzy relation in a set X. µ is called
fuzzy left (right) compatible if µ(x, y) ≤ µ(zx, zy) (µ(x, y) ≤ µ(xz, yz))
for all x, y, z ∈ X. A fuzzy equivalence relation on X is called a fuzzy left
congruence (right congruence) if it is fuzzy left compatible (right com-
patible). A fuzzy equivalence relation on X is called a fuzzy congruence
if it is a fuzzy left and right congruence.

Definition 2.4. Let µ be a fuzzy relation in a set X. µ−1 is defined
as a fuzzy relation in X by µ−1(x, y) = µ(y, x).

It is easy to see that (µ ◦ ν)−1 = ν−1 ◦ µ−1 for fuzzy relations µ and
ν. The following Proposition 2.5, Proposition 2.6, and Proposition 2.7
are due to Samhan ([6]).

Proposition 2.5. Let µ be a fuzzy relation on a set X. Then ∪∞n=1 µ
n

is the smallest transitive fuzzy relation on X containing µ, where µn =
µ ◦ µ ◦ · · · ◦ µ.

Proof. See Proposition 2.3 of [6].

Proposition 2.6. Let µ be a fuzzy relation on a set X. If µ is sym-
metric, then so is ∪∞n=1 µ

n, where µn = µ ◦ µ ◦ · · · ◦ µ.

Proof. See Proposition 2.4 of [6].

Proposition 2.7. If µ is a fuzzy relation on a semigroup S that is
fuzzy left and right compatible, then so is ∪∞n=1 µ

n, where µn = µ ◦ µ ◦
· · · ◦ µ.

Proof. See Proposition 3.6 of [6].

Proposition 2.8. Let µ and each νi be fuzzy relations in a set X for
all i ∈ I. Then µ ◦ ( ∩

i∈I
νi) ⊆ ∩

i∈I
(µ ◦ νi) and ( ∩

i∈I
νi) ◦ µ ⊆ ∩

i∈I
(νi ◦ µ).

Proof. Straightforward.
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Proposition 2.9. If µ is a reflexive fuzzy relation on a set X, then
µn+1(x, y) ≥ µn(x, y) for all natural numbers n and all x, y ∈ X.

Proof. Straightforward.

3. Redefined fuzzy congruences on semigroups

In this section we develop some basic properties of the fuzzy con-
gruences, find the fuzzy congruence generated by a fuzzy relation on a
semigroup, and give some lattice theoretic properties of fuzzy congru-
ences.

Proposition 3.1. Let µ be a fuzzy relation on a set S. If µ is reflexive,
then so is ∪∞n=1 µ

n, where µn = µ ◦ µ ◦ · · · ◦ µ.

Proof. Clearly µ1 = µ is reflexive. Suppose that µk is reflexive. Then
µk+1(x, x) ≥ µk(x, x) ≥ ε > 0 for all x ∈ S by Proposition 2.9. The
remaining part of the proof is exactly same as that of Proposition 3.1 in
[1].

Proposition 3.2. Let µ and ν be fuzzy congruences in a set X. Then
µ ∩ ν is a fuzzy congruence.

Proof. It is clear from Proposition 2.8.

It is easy to see that even though µ and ν are fuzzy congruences,
µ∪ν is not necessarily a fuzzy congruence. We find the fuzzy congruence
generated by µ ∪ ν in the following proposition.

Proposition 3.3. Let µ and ν be fuzzy congruences on a semigroup
S. Then the fuzzy congruence generated by µ∪ν in S is ∪∞n=1(µ∪ν)n =
(µ ∪ ν) ∪ [(µ ∪ ν) ◦ (µ ∪ ν)] ∪ . . . .

Proof. Clearly (µ∪ν)(x, x) ≥ ε > 0 for all x ∈ S. The remaining part
of the proof is exactly same as that of Proposition 3.3 in [1].

We now turn to the characterization of the fuzzy congruence generated
by a fuzzy relation on a semigroup.

Definition 3.4. Let µ be a fuzzy relation on a semigroup S and let
S1 = S ∪ {e}, where e is the identity of S. We define the fuzzy relation
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µ∗ on S as

µ∗(x, y) =
⋃

c,d∈S1,
cad=x,
cbd=y

µ(a, b) for all x, y ∈ S.

Proposition 3.5. Proposition 3.5 Let µ and ν be two fuzzy relations
on a semigroup S. Then

(1) µ ⊆ µ∗

(2) (µ∗)−1 = (µ−1)∗

(3) If µ ⊆ ν, then µ∗ ⊆ ν∗

(4) (µ ∪ ν)∗ = µ∗ ∪ ν∗
(5) µ = µ∗ if and only if µ is fuzzy left and right compatible
(6) (µ∗)∗ = µ∗

Proof. See Proposition 3.5 of [6].

The generalized fuzzy congruence in a semigroup is not always gen-
erated by a fuzzy relation (see Theorem 3.6 of [1]). We show that the
fuzzy congruence on a semigroup, which is newly defined in this note, is
always generated by a fuzzy relation.

Theorem 3.6. Let µ be a fuzzy relation on a semigroup S. Then the
fuzzy congruence generated by µ is{

∪∞n=1 [µ∗ ∪ (µ∗)−1 ∪ θ∗]n, if µ(x, y) > 0 for some x 6= y ∈ S
∪∞n=1 (µ∗ ∪ ζ∗)n, if µ(x, y) = 0 for all x 6= y ∈ S

where θ(z, z) = max [ sup
x 6=y∈S

µ(x, y), ε] for all z ∈ S, θ = θ−1, θ(x, y) ≤

µ(x, y) for all x, y ∈ S with x 6= y, ζ(z, z) = ε for all z ∈ S, ζ(x, y) = 0
for all x 6= y ∈ S, and µ∗, θ∗, and ζ∗ are fuzzy relation on S defined in
Definition 3.4.

Proof. We consider the case that µ(x, y) > 0 for some x 6= y ∈ S. Let
µ1 = µ∗ ∪ (µ∗)−1 ∪ θ∗. Then µ1(z, z) ≥ θ∗(z, z) ≥ θ(z, z) ≥ ε > 0 for
all z ∈ S. Let S1 = S ∪ {e}, where e is the identity of S. Since x 6= y
implies a 6= b in Definition 3.4, µ∗(x, y) ≤ sup

x 6=y∈S
µ(x, y) ≤ θ(t, t) for all

t ∈ S. Since θ(x, y) ≤ µ(x, y), θ∗(x, y) ≤ µ∗(x, y) by (3) of Proposition
3.5. That is,

inf
t∈S

µ1(t, t) ≥ inf
t∈S

θ∗(t, t) ≥ θ(t, t) ≥ µ∗(x, y) ≥ θ∗(x, y).
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Since inf
t∈S

µ1(t, t) ≥ θ(t, t) ≥ µ∗(y, x), inf
t∈S

µ1(t, t) ≥ (µ∗)−1(x, y). Thus

inf
t∈S

µ1(t, t) ≥ max[µ∗(x, y), (µ∗)−1(x, y), θ∗(x, y)] = µ1(x, y).

That is, µ1 is reflexive. By Proposition 3.1, ∪∞n=1 µ
n
1 is reflexive. Since

θ = θ−1, θ∗ = (θ−1)∗ = (θ∗)−1 by (2) of Proposition 3.5, and hence

µ1(x, y) = max [(µ∗)−1(y, x), µ∗(y, x), (θ∗)−1(x, y)] = µ1(y, x).

Thus µ1 is symmetric. By Proposition 2.6, ∪∞n=1 µ
n
1 is symmetric. By

Proposition 2.5, ∪∞n=1 µ
n
1 is transitive. Hence ∪∞n=1 µ

n
1 is a fuzzy equiva-

lence relation containing µ. By (2), (4), and (6) of Proposition 3.5,

µ∗1 = (µ∗ ∪ (µ∗)−1 ∪ θ∗)∗ = (µ∗ ∪ (µ−1)∗ ∪ θ∗)∗ = (µ∗)∗ ∪ ((µ−1)∗)∗ ∪ (θ∗)∗

= µ∗ ∪ (µ−1)∗ ∪ θ∗ = µ∗ ∪ (µ∗)−1 ∪ θ∗ = µ1.

Thus µ1 is fuzzy left and right compatible by (5) of Proposition 3.5.
By Proposition 2.7, ∪∞n=1 µ

n
1 is fuzzy left and right compatible. Thus

∪∞n=1 µ
n
1 is a fuzzy congruence containing µ. Let ν be a fuzzy congruence

containing µ. Then (µ ∪ µ−1 ∪ θ)(x, y) ≤ ν(x, y) for all x, y ∈ S such
that x 6= y. Since θ(a, a) = max [ sup

x 6=y∈S
µ(x, y), ε] ≤ ν(a, a) for all

a ∈ S, max [µ(a, a), µ−1(a, a), θ(a, a)] ≤ ν(a, a) for all a ∈ S. Thus
µ ∪ µ−1 ∪ θ ⊆ ν. By (2), (3), and (4) of Proposition 3.5,

µ1 = µ∗ ∪ (µ∗)−1 ∪ θ∗ = µ∗ ∪ (µ−1)
∗ ∪ θ∗ = (µ ∪ µ−1 ∪ θ)∗ ⊆ ν∗.

Since ν is fuzzy left and right compatible, ν = ν∗ by (5) of Proposition
3.5. Thus µ1 ⊆ ν. Suppose µk

1 ⊆ ν. Then

µk+1
1 (b, c) = (µk

1 ◦ µ1)(b, c) = sup
d∈S

min[µk
1(b, d), µ1(d, c)]

≤ sup
d∈S

min [ν(b, d), ν(d, c)] = (ν ◦ ν)(b, c)

for all b, c ∈ S. That is, µk+1
1 ⊆ (ν ◦ ν). Since ν is transitive, µk+1

1 ⊆ ν.
By the mathematical induction, µn

1 ⊆ ν for every natural number n.
Thus

∪∞n=1 [µ∗∪(µ∗)−1∪θ∗]n = ∪∞n=1 µ1
n = µ1∪(µ1◦µ1)∪(µ1◦µ1◦µ1) · · · ⊆ ν.

We consider the case that µ(x, y) = 0 for all x 6= y ∈ S. Let µ2 =
µ∗ ∪ ζ∗. Then µ2(a, a) ≥ ε > 0 for all a ∈ S. Let S1 = S ∪ {e}, where
e is the identity of S. Since x 6= y implies a 6= b in Definition 3.4,
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µ∗(x, y) = 0 and ζ∗(x, y) = 0 from µ(x, y) = 0 and ζ(x, y) = 0. That is,
(µ∗ ∪ ζ∗)(x, y) < ζ(t, t) for all t ∈ S. Thus

inf
t∈S

µ2(t, t) ≥ inf
t∈S

ζ∗(t, t) ≥ ζ(t, t) > max[µ∗(x, y), ζ∗(x, y)] = µ2(x, y).

Hence µ2 is reflexive. By Proposition 3.1, ∪∞n=1 µ
n
2 is reflexive. Since

µ∗(x, y) = 0 and ζ∗(x, y) = 0, µ2 is symmetric. By Proposition 2.6,
∪∞n=1 µ

n
2 is symmetric. By Proposition 2.5, ∪∞n=1 µ

n
2 is transitive. Hence

∪∞n=1 µ
n
2 is a fuzzy equivalence relation containing µ. The proof of the

remaining parts is similar to that of the above case.

We now turn to the lattice theoretic properties of fuzzy congruences.
For the collection {µj : j ∈ J} of all generalized fuzzy congruences on a
semigroup S with a relation . defined in Proposition 3.7, it is easy to
see that ({µj : j ∈ J}, .) is not a complete lattice since inf

j∈J
µj does not

exist (see [1]). In next proposition, we show that the collection of the
redefined fuzzy congruences is a complete lattice.

Proposition 3.7. Let C(S) be the collection of all fuzzy congruences
on a semigroup S. Then (C(S),.) is a complete lattice, where . is a
relation on the set of all fuzzy congruences on S defined by µ . ν iff
µ(x, y) ≤ ν(x, y) for all x, y ∈ S.

Proof. Clearly . is a partial order relation. It is easy to check that
the relation σ defined by σ(x, y) = 1 for all x, y ∈ S is in C(S) and the
relation λ defined by λ(x, y) = ε for x = y and λ(x, y) = 0 for x 6= y is in
C(S). Also σ is the greatest element and λ is the least element of C(S)
with respect to the ordering .. Let {µj}j∈J be a non-empty collection
of fuzzy congruences in C(S). Let µ(x, y) = inf

j∈J
µj(x, y) for all x, y ∈ S.

Clearly µ(x, x) ≥ ε for all x ∈ S, inf
t∈X

µ(t, t) ≥ µ(y, z) for all y 6= z ∈ X,

µ = µ−1, µ(x, y) ≤ µ(zx, zy), and µ(x, y) ≤ µ(xz, yz) for all x, y, z ∈ S.
It is easy to see that µ ◦ µ ⊆ µ (see Proposition 6.1 of [4]). That is,
µ ∈ C(S). Since µ is the greatest lower bound of {µj}j∈J , (C(S),.) is
a complete lattice.

We define a join ∨ and a meet ∧ on C(S) by µ ∨ ν =< µ ∪ ν >c

and µ ∧ ν = µ ∩ ν, where < µ ∪ ν >c is the fuzzy congruence generated
by µ ∪ ν. It is clear that if µ, ν ∈ C(S), then µ ∧ ν ∈ C(S) and
µ∨ ν ∈ C(S) from Proposition 3.2 and Propostion 3.3, respectively. Let
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Ck(S) = {µ ∈ C(S) : µ(c, c) = k for all c ∈ S}. Then it is easy to see
that (Ck(S),∨,∧) is a sublattice of C(S) for 0 < ε ≤ k ≤ 1.

Definition 3.8. A lattice (L,∨,∧) is called modular if (x∨ y)∧ z ≤
x ∨ (y ∧ z) for all x, y, z ∈ L with x ≤ z.

Lemma 3.9. Let µ and ν be fuzzy congruences on a semigroup S such
that µ(c, c) = ν(c, c) for all c ∈ S. If µ◦ν = ν ◦µ, then µ◦ν is the fuzzy
congruence on S generated by µ ∪ ν.

Proof. (µ◦ν)(a, a) = sup
z∈S

min [µ(a, z), ν(z, a)] ≥ min[µ(a, a), ν(a, a)] ≥

ε > 0 for all a ∈ S. The remaining part of the proof is same as that of
Lemma 4.3 in [1].

Theorem 3.10. Let S be a semigroup and let H be a sublattice of
(Ck(S),∨,∧) such that µ ◦ ν = ν ◦ µ for all µ, ν ∈ H. Then H is a
modular lattice for 0 < ε ≤ k ≤ 1.

Proof. Let µ, ν, ρ ∈ H with µ ≤ ρ. Let x, y ∈ S. Then it is straight-
forward (see Theorem 4.5 of [6]) that (µ ◦ ν) ∧ ρ ≤ µ ◦ (ν ∧ ρ). Since
µ, ν ∈ Ck(S), µ(c, c) = ν(c, c) = k for all c ∈ S. By Lemma 3.9, µ ◦ ν is
the fuzzy congruence generated by µ ∪ ν. That is, µ ∨ ν = µ ◦ ν. Thus
(µ∨ν)∧ρ ≤ µ◦ (ν∧ρ). Since H is a sublattice and ρ, ν ∈ H, ν∧ρ ∈ H.
Since µ ∈ H and ν∧ρ ∈ H, µ◦(ν∧ρ) = (ν∧ρ)◦µ. Also (ν∧ρ)(c, c) = k
and µ(c, c) = k for all c ∈ S. By Lemma 3.9, µ ◦ (ν ∧ ρ) is the fuzzy
congruence generated by µ ∪ (ν ∧ ρ). That is, µ ◦ (ν ∧ ρ) = µ ∨ (ν ∧ ρ).
Thus (µ ∨ ν) ∧ ρ ≤ µ ∨ (ν ∧ ρ). Hence H is modular.

Corollary 3.11. If S is a group and 0 < ε ≤ k ≤ 1, then (Ck(S),∨,∧)
is a modular lattice.

Proof. It is easy to see that if S is a group, then µ ◦ ν = ν ◦ µ for all
µ, ν ∈ Ck(S) (see Proposition 4.3 of [6]). By Theorem 3.10, (Ck(S),∨,∧)
is modular.
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