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A STUDY ON THE CATEGORY OF NORMAL FUZZY

HYPERGROUPS

Ig Sung Kim

Abstract. Although the category NFHG of normal fuzzy hyper-
groups is not a topos, it forms a pseudo topos. Also we show that
there are pseudo power objects in NFHG.

1. Introduction

Sun [3] showed that the category NFHG of normal fuzzy hypergroups
satisfies all the axiom of topos except for the subobject classifier axiom.
So we define a pseudo subobject classifier, pseudo topos and pseudo
power object. Also Goldblatt [1] showed that any topos has power ob-
jects.

In this paper, we show that NFHG has a pseudo subobject classifier.
So NFHG forms a pseudo topos. Also we show that there are pseudo
power objects in NFHG which is not a topos.

2. Preliminaries

In this section, we state some definitions and properties which will
serve as the basic tools for the arguments used to prove our results.
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Definition 2.1. An elementary topos is a category E that satisfies
the following;

(T1) E is finitely complete,
(T2) E has exponentiation,
(T3) E has a subobject classifier.

(T2) means that for every object A in E , the endofunctor (−) × A
has its right adjoint (−)A. Hence for every object A in E , there exists
an object BA, and a morphism evA : BA×A→ B, called the evaluation
map of A, such that for any Y and f : Y × A → B in E , there exists a
unique morphism g such that evA ◦ (g × id) = f ;

Y × A f−−−→ B

g×id
y yid

BA × A −−−→
evA

B

And subobject classifier in (T3) is an E-object Ω, together with a
morphism > : 1→ Ω such that for any monomorphism h : D → C, there
is a unique morphism χh : C → Ω, called the character of h : D → C
which makes the following diagram a pull-back;

D
!−−−→ 1

h

y y>
C −−−→

χh

Ω

Example 2.2. Category Set is a topos. {∗} is a terminal object.
Ω = {0, 1} and > : {∗} → Ω with >(∗) = 1 is a subobject classifier. If
we define
χh = 1 if c = h(d) for some d ∈ D,
χh = 0 otherwise
then χh is a characteristic function of D .

Let H be a nonempty set and F (H) = [0, 1]H be the set of all fuzzy
subset of H and F ∗(H) = F (H)−{φ}. A fuzzy hyperoperation on H is
a mapping ? : H2 → F (H) and the couple (H, ?) is called a partial fuzzy
hypergroupoid. If the fuzzy hyperoperation ? maps H2 into F ∗(H), then
(H, ?) is called a fuzzy hypergroupoid.
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Definition 2.3.

(1) A fuzzy semihypergroup is a a fuzzy hypergroupoid (H, ?) which
satisfies the associative law.

(2) A fuzzy quasihypergroup is a a fuzzy hypergroupoid (H, ?) which
satisfies the reproductive law.

(3) A fuzzy hypergroup is a fuzzy semihypergroup which is also a fuzzy
quasihypergroup

(4) A fuzzy subhypergroup (A, •) of a fuzzy hypergroup (B, •) is a
nonempty subset A ⊆ B such that for any a ∈ A, a•A = A = A•a.

Definition 2.4. A fuzzy hypergroup (H, ?) is said to be normal if it
satisfies the following three conditions;

(1) (x ? x)(x) = 1 for all x ∈ H;
(2) x ? y = x ? x ∪ y ? y for all x, y ∈ H;
(3) (x ? x)(z) ≥ (x ? x)(y) ∧ (y ? y)(z) for all x, y, z ∈ H.

Let NFHG be a category, where objects are normal fuzzy hyper-
groups and a morphism from (H, �) to (K, ?) is a mapping f : H → K
such that f(a � b) ⊆ f(a) ? f(b).

Definition 2.5. A pseudo subobject classifier in a category E is an
object Ω, together with a morphism > : 1 → Ω such that for any
(A, ?) ⊆ (B, ?) and any inclusion k : A→ B, there is a unique morphism
χk : B → Ω which makes the following diagram a pull-back;

A
!−−−→ 1

k

y y>
B −−−→

χk

Ω

Definition 2.6. A pseudo topos is a category E that satisfies the
following;

(T1) E is finitely complete,
(T2) E has exponentiation,
(T3) E has a pseudo subobject classifier.

Definition 2.7. A category E is said to have pseudo power objects
if to each object A, there are objects P (A) and E(A), and inclusion
e : E(A) → P (A) × A, such that for any object B, and ”relation”,
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r : R→ B × A there is exactly one morphism fr : B → P (A) for which
there is a pullback of the form

R −−−→ E(A)

r

y ye
B × A −−−→

fr×iA
P (A)× A

3. Pseudo Topos NFHG and Pseudo Power Object

Theorem 3.1. NFHG has a pseudo subobject classifier.

Proof. Let Ω = {>,⊥} and � : Ω× Ω→ [0, 1]Ω defined by
(> � >)(>) = 1 = (> � >)(⊥),
(⊥ � ⊥)(>) = 1 = (⊥ � ⊥)(⊥)
(> � ⊥) = (> � >) ∪ (⊥ � ⊥).
Then (Ω, �) is a normal fuzzy hypergroup.
For any normal fuzzy subhypergroup (K, ?) ⊆ (H, ?) and inclusion

f : K → H defined by f(k) = k for any k ∈ K, we construct a morphism
χf : H → Ω defined by
χf (h) = > if x ∈ K
χf (h) = ⊥ otherwise.
For any z ∈ Ω, χf (u ? v)(z) ≤ (χf (u) � χf (v))(z) = 1. So χf (u ? v) ⊆

χf (u) � χf (v). Thus χf : H → Ω is a morphism. For any h : (M,⊕) →
(H, ?) and ! : (M,⊕) → ({∗},�) with χf ◦ h = >◦ !, we have that
χf ◦ h = >◦ ! implies h(m) ∈ Im(f). That is, h(m) = f(k) for some
k ∈ K. So there exists a morphism g : (M,⊕) → (K, ?) such that
g(m) = k with h(m) = f(k) for all m ∈M . Clearly, f ◦ g = h and such
a morphism is unique.

K
!−−−→ {∗}

f

y y>
H −−−→

χf

Ω

Corollary 3.2. NFHG is a pseudo topos.
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Theorem 3.3. In category NFHG, for each object (A,�) there are
objects (P (A), ?), (E(A),4) and inclusion g : (E(A),4)→ (P (A), ?)×
(A,�) such that for any object (B,⊕) and relation (R,5) from (A,�)
to (B,⊕), there is exactly one morphism fr : (B,⊕) → (P (A), ?) for
which there is a pullback of the form

(R,5)
f−−−→ (E(A),4)

r

y yg
(B,⊕)× (A,�) −−−→

fr×iA
(P (A), ?)× (A,�)

where ((b1, a1)5 (b2, a2))(r1, r2) =((b1 ⊕ b1)(r1) ∧ (a1 � a1)(r2)) ∨((b2 ⊕
b2)(r1) ∧ (a2 � a2)(r2)) and r(b, a) = (b, a).

Proof. Let P (A) = (Ω, �)(A,�) = {f : A → Ω} where ? : P (A) ×
P (A)→ [0, 1]P (A) defined by (f ?f)(h) = ∧(f(x)�f(x))h(x) and E(A) =
{< f, a > |f ∈ P (A), a ∈ A, f(a) = >} where 4 : E(A) × E(A) →
[0, 1]E(A) defined by ((f, a)4 (g, b))(h, c) = ((f ? f)(h) ∧ (a � a)(c)) ∨
((g?g)(h)∧(b�b)(c)). Then we obtain objects (P (A), ?) and (E(A),4).
Consider

E(A)
!−−−→ {∗}

g

y y>
P (A)× A −−−→

χg

Ω

Let χg < f, a >= f(a), then χg is a morphism and χg ◦ g = >◦!.
By the property of (P (A), ?) and (E(A),4), Ω is a pseudo subobject
classifier of the inclusion g : E(A)→ P (A)×A. So the previous square
is a pullback.

Consider

R
f−−−→ E(A)

!−−−→ {∗}

r

y yg y>
B × A −−−→

fr×ir
P (A)× A −−−→

χg

Ω

Let fr : B → P (A) defined by
(fr(b))(a) = (>◦!) < b, a >, if < b, a >∈ R
(fr(b))(a) = ⊥, otherwise
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Then fr : B → P (A) is a morphism. And Ω is a pseudo subobject
classifier of the inclusion r : R → B × A with ! : R → {∗}. So the
outer square is a pullback. By definition of pullback, there is exactly
one morphism f : R→ E(A) such that g ◦ f = (fr× ir) ◦ r. By pullback
Lemma, the left square is a pullback.

Corollary 3.4. NFHG has pseudo power objects.
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