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ABSOLUTE CONTINUITY OF THE REPRESENTING

MEASURES OF THE HYPERGEOMETRIC

TRANSLATION OPERATORS ATTACHED TO THE

ROOT SYSTEM OF TYPE B2 AND C2

Khalifa Trimèche

Abstract. We prove in this paper the absolute continuity of the
representing measures of the hypergeometric translation operators
Tx and T W

x associated respectively to the Cherednik operators and
the Heckman-Opdam theory attached to the root system of type B2

and C2 which are studied in [9].

1. Introduction

We consider the differential-difference operators Tj, j = 1, 2, ...d asso-
ciated with a root systemR, a Weyl group W and a multiplicity function
k, introduced by I. Cherednik in [2], and called the Cherednik operators
in the literature. These operators are helpful for the extension and sim-
plification of the theory of Heckman-Opdam, which is a generalization
of the harmonic analysis on the symmetric spaces G|K (see [3, 4, 5, 7]).
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The notion of hypergeometric translation operators introduced in [8]
is basic in the harmonic analysis associated to the Cherednik opera-
tors and the Heckman-Opdam theory. We have considered in [9] the
hypergeometric translation operators Tx, and T Wx , x ∈ R2, associated
respectively to the Cherednik operators and the Heckman-Opdam the-
ory attached to the root system of type B2 and C2 we have proved that
these operators are integral transforms, more precisely, for all function
f in E(R2) (the space of C∞-functions on R2) we have

∀ t ∈ R2, Tx(f)(t) =

∫
R2

f(z)dmx,t(z), (1.1)

where mx,t is a positive measure with compact support contained in the
set {z ∈ R2 ; |‖x‖ − ‖t‖| ≤ ‖z‖ ≤ ‖x‖+ ‖t‖}, and of norm equal to 1.
From this result we have deduced that for all function f in E(R2)W (the
subspace of E(R2) of W -invariant functions), we have

∀ t ∈ R2 , T Wx (f)(t) =

∫
R2

f(z)dmW
x,t(z), (1.2)

where

mW
x,t =

1

|W |2
∑

w,w′∈W

mwx,w′t. (1.3)

In this paper we prove that for all x, t ∈ R2
reg (the regular part of R2)

the measures mx,t and mW
x,t are absolute continuous with respect to the

Lebesgue measure on R2. More precisely there exist positive functions
W(x, t, .) and WW (x, t, .) such that

dmx,t(z) =W(x, t, z)Ak(z)dz, (1.4)

dmW
x,t(z) =WW (x, t, z)Ak(z)dz, (1.5)

where Ak is a weight function on R2 which will be given in the following
section (see (2.8)).
The functions z → W(x, t, z) and z → WW (x, t, z) have their support
contained in the set {z ∈ R2; |‖x‖−‖t‖| ≤ ‖z‖ ≤ ‖x‖+ ‖t‖} and satisfy∫

R2

W(x, t, z)Ak(z)dz = 1, (1.6)

and ∫
R2

WW (x, t, z)Ak(z)dz = 1. (1.7)
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As applications of the previous results, we prove that for all λ ∈ C2,
the Opdam-Cherednik kernel Gλ and the Heckmann-Opdam hypergeo-
metric function Fλ possess the following product formulas

∀ x, t ∈ R2
reg, Gλ(x)Gλ(t) =

∫
R2

Gλ(z)W(x, t, z)Ak(z)dz, (1.8)

and

∀ x, t ∈ R2
reg, Fλ(x)Fλ(t) =

∫
R2

Fλ(z)WW (x, t, z)Ak(z)dz. (1.9)

2. The Cherednik operators and their eigenfunctions

We consider R2 with the standard basis {e1, e2} and inner product
〈., .〉 for which this basis is orthonormal. We extend this inner product
to a complex bilinear form on C2.

2.1. The root systems of type B2 and C2 and the multiplicity
functions.

The root system of type B2 can be identified with the set R given by

R = {±e1,±e2} ∪ {±e1 ± e2}, (2.1)

which can also be written in the form

R = {±α1,±α2,±α3 ± α4},
with

α1 = e1, α2 = e2, α3 = (e1 − e2), α4 = (e1 + e2). (2.2)

We denote by R+ the set of positive roots

R+ = {α1, α2, α3, α4}, (2.3)

and by Ro
+ the set of positive indivisible roots i.e, the roots α ∈ R+ such

that α
2
/∈ R+. Then we have

R0
+ = R+. (2.4)

For α ∈ R, we consider

rα(x) = x− 〈ᾰ, x〉α, with ᾰ =
2α

‖α‖2
, (2.5)

the reflection in the hyperplan Hα ⊂ R2 orthogonal to α. The reflections
rα, α ∈ R, generate a finite group W ⊂ O(2), called the Weyl group
associated with R. In this case W is isomorphic to the hyperoctahedral
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group which is generated by permutations and sign changes of the ei, i =
1, 2,.

The multiplicity function k : R →]0,+∞[ can be written in the form
k = (k1, k2) where k1 is the value on the roots α1, α2, and k2 is the value
on the roots α3, α4.

The positive Weyl chamber denoted by a+ is given by

a+ = {x ∈ R2 ;∀ α ∈ R+, 〈α, x〉 > 0}, (2.6)

it can also be written in the form

a+ = {(x1, x2) ∈ R2 ;x1 > x2 > 0}. (2.7)

Let also R2
reg be the subset of regular elements in R2, i.e., those elements

which belong to no hyperplane Hα = {x ∈ R2; 〈α, x〉 = 0}, α ∈ R.
Let Ak denote the weight function

∀ x ∈ R2,Ak(x) =
∏
α∈R+

| sinh〈α
2
, x〉|2k(α). (2.8)

Remark 2.1. The root system of type C2 can be identified with the
set R given by

R = {±2e1,±2e2} ∪ {±e1 ± e2},
which can also be written in the form

R = {±α1,±α2,±α3,±α4},
with

α1 = 2e1, α2 = 2e2, α3 = (e1 − e2), α4 = (e1 + e2).

The set of positive roots is the following

R+ = {α1, α2, α3, α4}.
If we denote by W (C2) the Weyl group associated to the root system R
of type C2, then we have

W (C2) = W (B2).

We denote also by k = (k1, k2) the multiplicity function of the root
system R of C2, where k1 is the value on the roots α1, α2, and k2 is the
value on the roots α3, α4.

In the remainder of the paper we shall give the results and their proofs
only for the root system of type B2. It is easy to obtain the analogous
of these results in the case of the root system of type C2.
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2.2. The Cherednik operators attached to the root system of
type B2.

The Cherednik operators Tj, j = 1, 2, on R2 associated with the Weyl
group W and the multiplicity function k are defined for f of class C1 on

R2 and x ∈ Rreg = R2\
⋃
α∈R

Hα by

Tjf(x) =
∂

∂xj
f(x) +

∑
α∈R+

k(α)αj

1− e−〈α,x〉
{f(x)− f(rαx)} − ρjf(x), (2.9)

with

ρj =
1

2

∑
α∈R+

k(α)αj, and αj = 〈α, ej〉. (2.10)

These operators can also be written in the following form

T1f(x) =
∂

∂x1

f(x) + k1
{f(x)− f(rα1x)}

1− e−〈α1,x〉
+ k2

[f(x)− f(rα3x)

1− e−〈α3,x〉

+
f(x)− f(rα4x)

1− e−〈α4,x〉

]
− (

1

2
k1 + k2)f(x).

.

(2.11)

T2f(x) =
∂

∂x2

f(x) + k1
{f(x)− f(rα2x)}

1− e−〈α2,x〉

+k2

[
− f(x)− f(rα3x)

1− e−〈α3,x〉
+
f(x)− f(rα4x)

1− e−〈α4,x〉

]
− 1

2
k1f(x).

(2.12)

2.3. The eigenfunctions of the Cherednik operators attached
to the root system of type B2.

We denote by Gλ, λ ∈ C2, the eigenfunction of the operators Tj, j =
1, 2. It is the unique analytic function on R2 which satisfies the differ-
ential difference system{

TjGλ(x) = −iλjGλ(x), x ∈ R2, j = 1, 2,
Gλ(0) = 1

(2.13)

It is called the Opdam-Cherednik kernel.
We consider the function Fλ, λ ∈ C2, defined by

∀ x ∈ R2, Fλ(x) =
1

|W |
∑
w∈W

Gλ(wx). (2.14)
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This function is the unique analytic W -invariant function on R2, which
satisfies the partial differential equation{

p(T )Fλ(x) = p(−iλ)Fλ(x), x ∈ R2,
Fλ(0) = 1,

(2.15)

for all W -invariant polynomials p on R2 and p(T ) = p(T1, T2). It is called
the Heckman-Opdam hypergeometric function.

The functions Gλ and Fλ possess the following properties

i) For all x ∈ R2 the function λ→ Gλ(x) is entire on C2.
ii) We have

∀ x ∈ R2, ∀ λ ∈ C2, Gλ(x) = G−λ(x). (2.16)

iii) We have

∀ x ∈ R2, ∀ λ ∈ C2, |Gλ(x)| ≤ GiIm(λ)(x). (2.17)

iv) We have

∀ x ∈ R2 ,∀ λ ∈ R2, |Gλ(x)| ≤ 1. (2.18)

∀ x ∈ R2, ∀ λ ∈ R2, |Fλ(x)| ≤ 1. (2.19)

v) The function Gλ, λ ∈ C2, admits the following Laplace type repre-
sentation

∀ x ∈ R2, Gλ(x) =

∫
R2

e−i〈λ,y〉dµx(y), (2.20)

where µx is a positive measure on R2 with support in Γ = conv{wx,w ∈
W} (the convexe hull of the orbit of x under W ).

vi) From (2.14), (2.20) we deduce that the function Fλ, λ ∈ C2, pos-
sesses the Laplace type representation

∀ x ∈ R2, Fλ(x) =

∫
R2

e−i〈λ,y〉dµWx (y), (2.21)

where µWx is the positive measure with support in Γ given by

µWx =
1

|W |
∑
w∈W

µwx. (2.22)
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3. The hypergeometric translation operator Tx

We consider the hypergeometric translation operator Tx, x ∈ R2, given
by the relation (1.1). In the following we give some properties of this
operator (see [9]).

i) For all x ∈ R2, the operator Tx is continuous from E(R2) (resp.
D(R2) the space of C∞-functions on R2 with compact support)
into itself, and for all f in D(R2) with support in the closed ball
B̄(0, a) of center 0 and radius a > 0, we have

suppTx(f) ⊂ B̄(0, a+ ‖x‖). (3.1)

ii) For all f in E(R2) and x, y ∈ R2, we have

Tx(f)(0) = f(x), and Tx(f)(y) = Ty(f)(x). (3.2)

iii) For x ∈ R2, g ∈ E(R2) and f in D(R2), we have∫
R2

Tx(g)(y)f(y)Ak(y)dy =

∫
R2

g(z)Tx(f̆)(−z)Ak(z)dz, (3.3)

where f̆ is the function given by

∀ x ∈ R2, f̆(x) = f(−x).

Remark 3.1. The hypergeometric translation operator T Wx , x ∈ R2,
given by the relation (1.2) satisfies the same properties as for the operator
Tx, x ∈ R2, by considering the spaces E(R2)W and D(R2)W (the subspace
of D(R2) of W -invariant functions).

Notation. We denote by B(c, a) the open ball of R2 of center c in R2

and radius a > 0, and by B̄(c, a) its closure.

Proposition 3.2. Let y0 ∈ R2 and a > 0. We consider the sequence
{fn}n∈N\{0} of functions in D(R2), positive, increasing such that :

∀ n ∈ N\{0}, suppfn ⊂ B̄(y0, a),∀ t ∈ B(y0, a−
1

n
), fn(t) = 1,

and

∀ t ∈ R2, lim
n→+∞

fn(t) = 1B(y0,a)(t),
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where 1B(y0,a) is the characteristic function of the ball B(y0, a). We have

∀ x, z ∈ R2, lim
n→+∞

Tx(fn)(z) = lim
n→+∞

∫
R2

fn(t)dmx,z(t)

=

∫
R2

1B(y0,a)(t)dmx,z(t).

The function z → mx,z(B(y0, a)) =

∫
R2

1B(y0,a)(t)dmx,z(t), which can also

be denoted by Tx(1B(y0,a))(z) is defined almost every where on R2 (see
[1] p. 17), measurable and for all function h in D(R2) we have∫

R2

mx,z(B(y0, a))h(z)Ak(z)dz =

∫
B(y0,a)

Tx(h̆)(−t)Ak(t)dt. (3.4)

Proof. For all x ∈ R2 and n ∈ N\{0}, the function Tx(fn) belongs to
D(R2). Then we obtain the results of this proposition from the mono-
tonic convergence theorem and the relation (3.3).

Remark 3.3. There exists a σ-algebra m in R2 which contains all
Borel sets in R2. Then for all E ∈ m, the function z → mx,z(E) is
defined almost every where on R2, measurable and we have the following
relation∫

R2

mx,z(E)h(z)Ak(z)dz =

∫
E

Tx(h̆)(−t)Ak(t)dt, h ∈ D(R2). (3.5)

In this section we shall prove that for all x ∈ R2
reg, t ∈ R2, the

measures mx,t and mW
x,t given by the relations (1.1) and (1.3) are absolute

continuous with respect to the Lebesgue measure on R2.

3.1. Absolute continuity of the measuremx,z.

Notation. We denote by λ the Lebesgue measure on R2.

Proposition 3.4. For x ∈ R2
reg, z ∈ R2, there exists a unique positive

function 	(x, z, .) integrable on R2 with respect to the Lebesgue measure
λ, and a positive measure ms

x,z on R2 such that for every Borel set E,
we have

mx,z(E) =

∫
E

	(x, z, t)dt+ms
x,z(E). (3.6)

Proof. We deduce (3.6) from (1.1) and Theorem 6.9 of [6] p.129-130,
and Theorem 8.6 and its Corollary of [6] p. 166.
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Remark 3.5.

i) The supports of the function t → 	(x, z, t) and the measure ms
x,z

are contained in the set {t ∈ R2; |‖x‖ − ‖z‖| ≤ ‖t‖ ≤ ‖x‖+ ‖z‖}.
ii) The measures ms

x,z and the Lebesgue mesure λ are mutually sin-
gular.

iii) From Theorem 8.6, p.166 and Definition 8.3, p.164, of [6], we have

	(x, z, t) = lim
a→0

mx,z(B(t, a))

λ(B(t, a)
. (3.7)

Proposition 3.6. We consider x ∈ R2
reg and a positive function h in

D(R2) with support contained in the ball B̄(0, R), R > 0.

i) For all Borel set E, we have∫
E

N h
x (t)dt =

∫
B̄(0,R)

h(z)ms
x,z(E)Ak(z)dz, (3.8)

where

N h
x (t) = Tx(h̆)(−t)Ak(t)−

∫
B̄(0,R)

	(x, z, t)h(z)Ak(z)dz. (3.9)

ii) We have
∀ t ∈ R2,N h

x (t) ≥ 0. (3.10)

Proof.

i) By using the relations (3.5), (3.6), we obtain∫
E

Tx(h̆)(−t)Ak(t)dt =

∫
B̄(0,R)

mx,z(E)h(z)Ak(z)dz

=

∫
B̄(0,R)

[ ∫
E

	(x, z, t)dt+ms
x,z(E)

]
h(z)Ak(z)dz.

We deduce (3.8) by applying Fubini-Tonelli’s theorem to the second
member.

ii) From the relation (3.8), the positivity of the measure ms
x,z implies

that for all Borel set E, we have∫
E

N h
x (t)dt ≥ 0.

Thus
∀ t ∈ R2,N h

x (t) ≥ 0.
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Proposition 3.7. The measure Λh
x on R2 given for all Borel set E

by

Λh
x(E) =

∫
E

N h
x (t)dt, (3.11)

is positive and bounded.

Proof.
- The relation (3.10) gives the positivity of the measure Λh

x.
- From the relation (3.11) (3.8), for all Borel set E we have

Λh
x(E) ≤

∫
B̄(0,R)

‖ms
x,z‖h(z)Ak(z)dz. (3.12)

On the other hand by using (3.6), we obtain for all z ∈ R2
reg,

ms
x,z(E) ≤ mx,z(E),

thus

‖ms
x,z‖ ≤ ‖mx,z‖ = 1.

By using this result, the relation (3.12) implies that for all Borel set E,
we have

Λh
x(E) ≤Mh,

where

Mh =

∫
B̄(0,R)

h(z)Ak(z)dz.

Then the measure Λh
x is bounded.

Proposition 3.8. Let x ∈ R2
reg and h be a positive function in D(R2)

with support contained in the ball B̄(0, R), R > 0.

i) For all Borel set E we have

Λh
x(E) = 0 (3.13)

ii) For x, t ∈ R2
reg, we have

Tx(h)(t) =

∫
B̄(0,R)

h(z)W(x, t, z)Ak(z)dz, (3.14)

with

W(x, t, z) =
	(x,−z,−t)
Ak(t)

(3.15)

Proof.
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i) From the relations (3.11), (3.8), for all Borel set E the measure Λh
x

possesses also the following form

Λh
x(E) =

∫
B̄(0,R)

ms
x,z(E)h(z)Ak(z)dz. (3.16)

On the other hand from Proposition 3.7 the measure Λh
x is abso-

lute continuous with respect to the Lebesgue measure λ and from
Remark 3.5 ii) the measure ms

x,z, z ∈ B̄(0, R) and the Lebesgue
measure λ are mutually singular. Then from Proposition 6.8,(f),
p. 129, of [6], the measure Λh

x and ms
x,z, z ∈ B̄(0, R), are mutually

singular. By using the definition of measures mutually singular
(see p. 128 of [6]), we deduce (3.13) from (3.16).

ii) By using the i) and (3.11), (3.9), we get

Tx(h̆)(−t)Ak(t) =

∫
B̄(0,R)

	(x, z, t)h(z)Ak(z)dz (3.17)

As
Ak(t) 6= 0⇔ t ∈ R2

reg,

then for t ∈ R2
reg, we deduce (3.14), (3.15) from (3.17).

Theorem 3.9. For all f in E(R2) and x, t ∈ R2
reg, we have

Tx(f)(t) =

∫
R2

f(z)W(x, t, z)Ak(z)dz, (3.18)

with
∀ z ∈ R2, W(x, t, z) =W(t, x, z). (3.19)

Proof. We obtain (3.18), (3.19) by writing f = f+− f− and by using
Proposition 3.8, and the properties i), ii) of the operator Tx.

Remark 3.10. Theorem 3.9 shows that for all x ∈ R2
reg, t ∈ R2

the measure mx,t is absolute continuous with respect to the measure
Ak(z)dz. More precisely for all z ∈ R2, we have

dmx,t(z) =W(x, t, z)Ak(z)dz. (3.20)

Corollary 3.11.

i) For all λ ∈ C2 and x, t ∈ R2
reg, we have

Gλ(x)Gλ(t) =

∫
R2

Gλ(z)W(x, t, z)Ak(z)dz. (3.21)
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ii) For all x, t ∈ R2
reg, we have∫

R2

W(x, t, z)Ak(z)dz = 1. (3.22)

iii) For all x, t ∈ R2
reg, the support of the function z → W(x, t, z) is

contained in the set {z ∈ Rd ; |‖x‖ − ‖t‖| ≤ ‖z‖ ≤ ‖x‖+ ‖t‖}.

Proof. We deduce the results of this Corollary from (1.1), (3.20),
Theorem 3.9 and the product formula for the Opdam-Cherednik ker-
nel Gλ, λ ∈ C2, (see [9] p. 24).

3.2. Absolute continuity of the measure mW
x,t.

Proposition 3.12. For all x, t ∈ R2
reg the measure mW

x,t is absolute

continuous with respect to the Lebesgue measure on R2. More precisely
for all z ∈ R2, we have

dmW
x,t(z) =WW (x, t, z)Ak(z)dz, (3.23)

where WW (x, t, z) is the function given by

WW (x, t, z) =
1

|W |2
∑

w,w′∈W

W(wx,w′t, z). (3.24)

Proof. The relation (1.3) and Theorem 3.9 imply (3.23), (3.24).

Corollary 3.13.

i) For all λ ∈ C2 and x, t ∈ R2
reg, we have

Fλ(x)Fλ(t) =

∫
R2

Fλ(z)WW (x, t, z)Ak(z)dz. (3.25)

ii) For all x, t ∈ R2
reg, we have∫

R2

WW (x, t, z)Ak(z)dz = 1. (3.26)

iii) For all x, t ∈ R2
reg, the support of the function z → WW (x, t, z) is

contained in the set {z ∈ R2; |‖x‖ − ‖t‖| ≤ ‖z‖ ≤ ‖x‖+ ‖t‖}.

Proof. We obtain the results of this Corollary from the relation (1.2),
Proposition 3.12, and the product formula for the Heckman-Opdam hy-
pergeometric function Fλ, λ ∈ C2, (see [9] p. 27).
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