ABSOLUTE CONTINUITY OF THE REPRESENTING MEASURES OF THE HYPERGEOMETRIC TRANSLATION OPERATORS ATTACHED TO THE ROOT SYSTEM OF TYPE B_{2} AND C_{2}

Khalifa Trimèche

Abstract

We prove in this paper the absolute continuity of the representing measures of the hypergeometric translation operators \mathcal{T}_{x} and \mathcal{T}_{x}^{W} associated respectively to the Cherednik operators and the Heckman-Opdam theory attached to the root system of type B_{2} and C_{2} which are studied in [9].

1. Introduction

We consider the differential-difference operators $T_{j}, j=1,2, \ldots d$ associated with a root system \mathcal{R}, a Weyl group W and a multiplicity function k, introduced by I. Cherednik in [2], and called the Cherednik operators in the literature. These operators are helpful for the extension and simplification of the theory of Heckman-Opdam, which is a generalization of the harmonic analysis on the symmetric spaces $G \mid K$ (see $[3,4,5,7]$).

[^0]The notion of hypergeometric translation operators introduced in [8] is basic in the harmonic analysis associated to the Cherednik operators and the Heckman-Opdam theory. We have considered in [9] the hypergeometric translation operators \mathcal{T}_{x}, and $\mathcal{T}_{x}^{W}, x \in \mathbb{R}^{2}$, associated respectively to the Cherednik operators and the Heckman-Opdam theory attached to the root system of type B_{2} and C_{2} we have proved that these operators are integral transforms, more precisely, for all function f in $\mathcal{E}\left(\mathbb{R}^{2}\right)$ (the space of C^{∞}-functions on \mathbb{R}^{2}) we have

$$
\begin{equation*}
\forall t \in \mathbb{R}^{2}, \mathcal{T}_{x}(f)(t)=\int_{\mathbb{R}^{2}} f(z) d m_{x, t}(z) \tag{1.1}
\end{equation*}
$$

where $m_{x, t}$ is a positive measure with compact support contained in the set $\left\{z \in \mathbb{R}^{2} ;|\|x\|-\|t\|| \leq\|z\| \leq\|x\|+\|t\|\right\}$, and of norm equal to 1 .
From this result we have deduced that for all function f in $\mathcal{E}\left(\mathbb{R}^{2}\right)^{W}$ (the subspace of $\mathcal{E}\left(\mathbb{R}^{2}\right)$ of W-invariant functions), we have

$$
\begin{equation*}
\forall t \in \mathbb{R}^{2}, \mathcal{T}_{x}^{W}(f)(t)=\int_{\mathbb{R}^{2}} f(z) d m_{x, t}^{W}(z) \tag{1.2}
\end{equation*}
$$

where

$$
\begin{equation*}
m_{x, t}^{W}=\frac{1}{|W|^{2}} \sum_{w, w^{\prime} \in W} m_{w x, w^{\prime} t} \tag{1.3}
\end{equation*}
$$

In this paper we prove that for all $x, t \in \mathbb{R}_{r e g}^{2}$ (the regular part of \mathbb{R}^{2}) the measures $m_{x, t}$ and $m_{x, t}^{W}$ are absolute continuous with respect to the Lebesgue measure on \mathbb{R}^{2}. More precisely there exist positive functions $\mathcal{W}(x, t,$.$) and \mathcal{W}^{W}(x, t,$.$) such that$

$$
\begin{gather*}
d m_{x, t}(z)=\mathcal{W}(x, t, z) \mathcal{A}_{k}(z) d z \tag{1.4}\\
d m_{x, t}^{W}(z)=\mathcal{W}^{W}(x, t, z) \mathcal{A}_{k}(z) d z \tag{1.5}
\end{gather*}
$$

where \mathcal{A}_{k} is a weight function on \mathbb{R}^{2} which will be given in the following section (see (2.8)).
The functions $z \rightarrow \mathcal{W}(x, t, z)$ and $z \rightarrow \mathcal{W}^{W}(x, t, z)$ have their support contained in the set $\left\{z \in \mathbb{R}^{2} ;|\|x\|-\|t\|| \leq\|z\| \leq\|x\|+\|t\|\right\}$ and satisfy

$$
\begin{equation*}
\int_{\mathbb{R}^{2}} \mathcal{W}(x, t, z) \mathcal{A}_{k}(z) d z=1 \tag{1.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{\mathbb{R}^{2}} \mathcal{W}^{W}(x, t, z) \mathcal{A}_{k}(z) d z=1 \tag{1.7}
\end{equation*}
$$

As applications of the previous results, we prove that for all $\lambda \in \mathbb{C}^{2}$, the Opdam-Cherednik kernel G_{λ} and the Heckmann-Opdam hypergeometric function F_{λ} possess the following product formulas

$$
\begin{equation*}
\forall x, t \in \mathbb{R}_{r e g}^{2}, G_{\lambda}(x) G_{\lambda}(t)=\int_{\mathbb{R}^{2}} G_{\lambda}(z) \mathcal{W}(x, t, z) \mathcal{A}_{k}(z) d z \tag{1.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\forall x, t \in \mathbb{R}_{r e g}^{2}, F_{\lambda}(x) F_{\lambda}(t)=\int_{\mathbb{R}^{2}} F_{\lambda}(z) \mathcal{W}^{W}(x, t, z) \mathcal{A}_{k}(z) d z \tag{1.9}
\end{equation*}
$$

2. The Cherednik operators and their eigenfunctions

We consider \mathbb{R}^{2} with the standard basis $\left\{e_{1}, e_{2}\right\}$ and inner product $\langle.,$.$\rangle for which this basis is orthonormal. We extend this inner product$ to a complex bilinear form on \mathbb{C}^{2}.

2.1. The root systems of type B_{2} and C_{2} and the multiplicity functions.

The root system of type B_{2} can be identified with the set \mathcal{R} given by

$$
\begin{equation*}
\mathcal{R}=\left\{ \pm e_{1}, \pm e_{2}\right\} \cup\left\{ \pm e_{1} \pm e_{2}\right\} \tag{2.1}
\end{equation*}
$$

which can also be written in the form

$$
\mathcal{R}=\left\{ \pm \alpha_{1}, \pm \alpha_{2}, \pm \alpha_{3} \pm \alpha_{4}\right\}
$$

with

$$
\begin{equation*}
\alpha_{1}=e_{1}, \alpha_{2}=e_{2}, \alpha_{3}=\left(e_{1}-e_{2}\right), \alpha_{4}=\left(e_{1}+e_{2}\right) . \tag{2.2}
\end{equation*}
$$

We denote by \mathcal{R}_{+}the set of positive roots

$$
\begin{equation*}
\mathcal{R}_{+}=\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right\} \tag{2.3}
\end{equation*}
$$

and by \mathcal{R}_{+}^{o} the set of positive indivisible roots i.e, the roots $\alpha \in \mathcal{R}_{+}$such that $\frac{\alpha}{2} \notin \mathcal{R}_{+}$. Then we have

$$
\begin{equation*}
\mathcal{R}_{+}^{0}=\mathcal{R}_{+} . \tag{2.4}
\end{equation*}
$$

For $\alpha \in \mathcal{R}$, we consider

$$
\begin{equation*}
r_{\alpha}(x)=x-\langle\breve{\alpha}, x\rangle \alpha, \text { with } \breve{\alpha}=\frac{2 \alpha}{\|\alpha\|^{2}}, \tag{2.5}
\end{equation*}
$$

the reflection in the hyperplan $H_{\alpha} \subset \mathbb{R}^{2}$ orthogonal to α. The reflections $r_{\alpha}, \alpha \in \mathcal{R}$, generate a finite group $W \subset O(2)$, called the Weyl group associated with \mathcal{R}. In this case W is isomorphic to the hyperoctahedral
group which is generated by permutations and sign changes of the $e_{i}, i=$ 1,2 .

The multiplicity function $k: \mathcal{R} \rightarrow] 0,+\infty[$ can be written in the form $k=\left(k_{1}, k_{2}\right)$ where k_{1} is the value on the roots α_{1}, α_{2}, and k_{2} is the value on the roots α_{3}, α_{4}.

The positive Weyl chamber denoted by \mathfrak{a}^{+}is given by

$$
\begin{equation*}
\mathfrak{a}^{+}=\left\{x \in \mathbb{R}^{2} ; \forall \alpha \in \mathcal{R}_{+},\langle\alpha, x\rangle>0\right\} \tag{2.6}
\end{equation*}
$$

it can also be written in the form

$$
\begin{equation*}
\mathfrak{a}^{+}=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} ; x_{1}>x_{2}>0\right\} . \tag{2.7}
\end{equation*}
$$

Let also $\mathbb{R}_{r e g}^{2}$ be the subset of regular elements in \mathbb{R}^{2}, i.e., those elements which belong to no hyperplane $H_{\alpha}=\left\{x \in \mathbb{R}^{2} ;\langle\alpha, x\rangle=0\right\}, \alpha \in \mathcal{R}$.

Let \mathcal{A}_{k} denote the weight function

$$
\begin{equation*}
\forall x \in \mathbb{R}^{2}, \mathcal{A}_{k}(x)=\prod_{\alpha \in \mathcal{R}_{+}}\left|\sinh \left\langle\frac{\alpha}{2}, x\right\rangle\right|^{2 k(\alpha)} \tag{2.8}
\end{equation*}
$$

Remark 2.1. The root system of type C_{2} can be identified with the set \mathcal{R} given by

$$
\mathcal{R}=\left\{ \pm 2 e_{1}, \pm 2 e_{2}\right\} \cup\left\{ \pm e_{1} \pm e_{2}\right\}
$$

which can also be written in the form

$$
\mathcal{R}=\left\{ \pm \alpha_{1}, \pm \alpha_{2}, \pm \alpha_{3}, \pm \alpha_{4}\right\}
$$

with

$$
\alpha_{1}=2 e_{1}, \alpha_{2}=2 e_{2}, \alpha_{3}=\left(e_{1}-e_{2}\right), \alpha_{4}=\left(e_{1}+e_{2}\right)
$$

The set of positive roots is the following

$$
\mathcal{R}_{+}=\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right\}
$$

If we denote by $W\left(C_{2}\right)$ the Weyl group associated to the root system \mathcal{R} of type C_{2}, then we have

$$
W\left(C_{2}\right)=W\left(B_{2}\right)
$$

We denote also by $k=\left(k_{1}, k_{2}\right)$ the multiplicity function of the root system \mathcal{R} of C_{2}, where k_{1} is the value on the roots α_{1}, α_{2}, and k_{2} is the value on the roots α_{3}, α_{4}.

In the remainder of the paper we shall give the results and their proofs only for the root system of type B_{2}. It is easy to obtain the analogous of these results in the case of the root system of type C_{2}.

2.2. The Cherednik operators attached to the root system of

 type B_{2}.The Cherednik operators $T_{j}, j=1,2$, on \mathbb{R}^{2} associated with the Weyl group W and the multiplicity function k are defined for f of class C^{1} on \mathbb{R}^{2} and $x \in \mathbb{R}_{\text {reg }}=\mathbb{R}^{2} \backslash \bigcup_{\alpha \in \mathcal{R}} H_{\alpha}$ by

$$
\begin{equation*}
T_{j} f(x)=\frac{\partial}{\partial x_{j}} f(x)+\sum_{\alpha \in \mathcal{R}_{+}} \frac{k(\alpha) \alpha^{j}}{1-e^{-\langle\alpha, x\rangle}}\left\{f(x)-f\left(r_{\alpha} x\right)\right\}-\rho_{j} f(x), \tag{2.9}
\end{equation*}
$$

with

$$
\begin{equation*}
\rho_{j}=\frac{1}{2} \sum_{\alpha \in \mathcal{R}_{+}} k(\alpha) \alpha^{j}, \quad \text { and } \alpha^{j}=\left\langle\alpha, e_{j}\right\rangle . \tag{2.10}
\end{equation*}
$$

These operators can also be written in the following form

$$
\begin{align*}
T_{1} f(x) & =\frac{\partial}{\partial x_{1}} f(x)+k_{1} \frac{\left\{f(x)-f\left(r_{\alpha_{1}} x\right)\right\}}{1-e^{-\left\langle\alpha_{1}, x\right\rangle}}+k_{2}\left[\frac{f(x)-f\left(r_{\alpha_{3}} x\right)}{1-e^{-\left\langle\alpha_{3}, x\right\rangle}}\right. \\
& \left.+\frac{f(x)-f\left(r_{\alpha_{4}} x\right)}{1-e^{-\left\langle\alpha_{4}, x\right\rangle}}\right]-\left(\frac{1}{2} k_{1}+k_{2}\right) f(x) . \tag{2.11}\\
T_{2} f(x) & =\frac{\partial}{\partial x_{2}} f(x)+k_{1} \frac{\left\{f(x)-f\left(r_{\alpha_{2}} x\right)\right\}}{1-e^{-\left\langle\alpha_{2}, x\right\rangle}} \\
& +k_{2}\left[-\frac{f(x)-f\left(r_{\alpha_{3}} x\right)}{1-e^{-\left\langle\alpha_{3}, x\right\rangle}}+\frac{f(x)-f\left(r_{\alpha_{4}} x\right)}{1-e^{-\left\langle\alpha_{4}, x\right\rangle}}\right]-\frac{1}{2} k_{1} f(x) . \tag{2.12}
\end{align*}
$$

2.3. The eigenfunctions of the Cherednik operators attached to the root system of type B_{2}.

We denote by $G_{\lambda}, \lambda \in \mathbb{C}^{2}$, the eigenfunction of the operators $T_{j}, j=$ 1,2 . It is the unique analytic function on \mathbb{R}^{2} which satisfies the differential difference system

$$
\begin{cases}T_{j} G_{\lambda}(x) & =-i \lambda_{j} G_{\lambda}(x), x \in \mathbb{R}^{2}, j=1,2 \tag{2.13}\\ G_{\lambda}(0) & =1\end{cases}
$$

It is called the Opdam-Cherednik kernel.
We consider the function $F_{\lambda}, \lambda \in \mathbb{C}^{2}$, defined by

$$
\begin{equation*}
\forall x \in \mathbb{R}^{2}, F_{\lambda}(x)=\frac{1}{|W|} \sum_{w \in W} G_{\lambda}(w x) . \tag{2.14}
\end{equation*}
$$

This function is the unique analytic W-invariant function on \mathbb{R}^{2}, which satisfies the partial differential equation

$$
\begin{cases}p(T) F_{\lambda}(x) & =p(-i \lambda) F_{\lambda}(x), \quad x \in \mathbb{R}^{2} \tag{2.15}\\ F_{\lambda}(0) & =1\end{cases}
$$

for all W-invariant polynomials p on \mathbb{R}^{2} and $p(T)=p\left(T_{1}, T_{2}\right)$. It is called the Heckman-Opdam hypergeometric function.

The functions G_{λ} and F_{λ} possess the following properties
i) For all $x \in \mathbb{R}^{2}$ the function $\lambda \rightarrow G_{\lambda}(x)$ is entire on \mathbb{C}^{2}.
ii) We have

$$
\begin{equation*}
\forall x \in \mathbb{R}^{2}, \forall \lambda \in \mathbb{C}^{2}, \overline{G_{\lambda}(x)}=G_{-\bar{\lambda}}(x) . \tag{2.16}
\end{equation*}
$$

iii) We have

$$
\begin{equation*}
\forall x \in \mathbb{R}^{2}, \forall \lambda \in \mathbb{C}^{2},\left|G_{\lambda}(x)\right| \leq G_{i I m(\lambda)}(x) \tag{2.17}
\end{equation*}
$$

iv) We have

$$
\begin{align*}
& \forall x \in \mathbb{R}^{2}, \forall \lambda \in \mathbb{R}^{2},\left|G_{\lambda}(x)\right| \leq 1 . \tag{2.18}\\
& \forall x \in \mathbb{R}^{2}, \forall \lambda \in \mathbb{R}^{2},\left|F_{\lambda}(x)\right| \leq 1 . \tag{2.19}
\end{align*}
$$

v) The function $G_{\lambda}, \lambda \in \mathbb{C}^{2}$, admits the following Laplace type representation

$$
\begin{equation*}
\forall x \in \mathbb{R}^{2}, G_{\lambda}(x)=\int_{\mathbb{R}^{2}} e^{-i\langle\lambda, y\rangle} d \mu_{x}(y), \tag{2.20}
\end{equation*}
$$

where μ_{x} is a positive measure on \mathbb{R}^{2} with support in $\Gamma=\operatorname{conv}\{w x, w \in$ $W\}$ (the convexe hull of the orbit of x under W).
vi) From (2.14), (2.20) we deduce that the function $F_{\lambda}, \lambda \in \mathbb{C}^{2}$, possesses the Laplace type representation

$$
\begin{equation*}
\forall x \in \mathbb{R}^{2}, F_{\lambda}(x)=\int_{\mathbb{R}^{2}} e^{-i\langle\lambda, y\rangle} d \mu_{x}^{W}(y) \tag{2.21}
\end{equation*}
$$

where μ_{x}^{W} is the positive measure with support in Γ given by

$$
\begin{equation*}
\mu_{x}^{W}=\frac{1}{|W|} \sum_{w \in W} \mu_{w x} \tag{2.22}
\end{equation*}
$$

3. The hypergeometric translation operator \mathcal{T}_{x}

We consider the hypergeometric translation operator $\mathcal{T}_{x}, x \in \mathbb{R}^{2}$, given by the relation (1.1). In the following we give some properties of this operator (see [9]).
i) For all $x \in \mathbb{R}^{2}$, the operator \mathcal{T}_{x} is continuous from $\mathcal{E}\left(\mathbb{R}^{2}\right)$ (resp. $\mathcal{D}\left(\mathbb{R}^{2}\right)$ the space of C^{∞}-functions on \mathbb{R}^{2} with compact support) into itself, and for all f in $\mathcal{D}\left(\mathbb{R}^{2}\right)$ with support in the closed ball $\bar{B}(0, a)$ of center 0 and radius $a>0$, we have

$$
\begin{equation*}
\operatorname{supp} \mathcal{T}_{x}(f) \subset \bar{B}(0, a+\|x\|) \tag{3.1}
\end{equation*}
$$

ii) For all f in $\mathcal{E}\left(\mathbb{R}^{2}\right)$ and $x, y \in \mathbb{R}^{2}$, we have

$$
\begin{equation*}
\mathcal{T}_{x}(f)(0)=f(x), \quad \text { and } \mathcal{T}_{x}(f)(y)=\mathcal{T}_{y}(f)(x) \tag{3.2}
\end{equation*}
$$

iii) For $x \in \mathbb{R}^{2}, g \in \mathcal{E}\left(\mathbb{R}^{2}\right)$ and f in $\mathcal{D}\left(\mathbb{R}^{2}\right)$, we have

$$
\begin{equation*}
\int_{\mathbb{R}^{2}} \mathcal{T}_{x}(g)(y) f(y) \mathcal{A}_{k}(y) d y=\int_{\mathbb{R}^{2}} g(z) \mathcal{T}_{x}(\breve{f})(-z) \mathcal{A}_{k}(z) d z \tag{3.3}
\end{equation*}
$$

where \breve{f} is the function given by

$$
\forall x \in \mathbb{R}^{2}, \breve{f}(x)=f(-x) .
$$

REMARK 3.1. The hypergeometric translation operator $\mathcal{T}_{x}^{W}, x \in \mathbb{R}^{2}$, given by the relation (1.2) satisfies the same properties as for the operator $\mathcal{T}_{x}, x \in \mathbb{R}^{2}$, by considering the spaces $\mathcal{E}\left(\mathbb{R}^{2}\right)^{W}$ and $\mathcal{D}\left(\mathbb{R}^{2}\right)^{W}$ (the subspace of $\mathcal{D}\left(\mathbb{R}^{2}\right)$ of W-invariant functions).

Notation. We denote by $B(c, a)$ the open ball of \mathbb{R}^{2} of center c in \mathbb{R}^{2} and radius $a>0$, and by $\bar{B}(c, a)$ its closure.

Proposition 3.2. Let $y_{0} \in \mathbb{R}^{2}$ and $a>0$. We consider the sequence $\left\{f_{n}\right\}_{n \in \mathbb{N} \backslash\{0\}}$ of functions in $\mathcal{D}\left(\mathbb{R}^{2}\right)$, positive, increasing such that :

$$
\forall n \in \mathbb{N} \backslash\{0\}, \operatorname{supp} f_{n} \subset \bar{B}\left(y_{0}, a\right), \forall t \in B\left(y_{0}, a-\frac{1}{n}\right), f_{n}(t)=1,
$$

and

$$
\forall t \in \mathbb{R}^{2}, \lim _{n \rightarrow+\infty} f_{n}(t)=1_{B\left(y_{0}, a\right)}(t),
$$

where $1_{B\left(y_{0}, a\right)}$ is the characteristic function of the ball $B\left(y_{0}, a\right)$. We have

$$
\begin{aligned}
\forall x, z \in \mathbb{R}^{2}, \lim _{n \rightarrow+\infty} \mathcal{T}_{x}\left(f_{n}\right)(z) & =\lim _{n \rightarrow+\infty} \int_{\mathbb{R}^{2}} f_{n}(t) d m_{x, z}(t) \\
& =\int_{\mathbb{R}^{2}} 1_{B\left(y_{0}, a\right)}(t) d m_{x, z}(t) .
\end{aligned}
$$

The function $z \rightarrow m_{x, z}\left(B\left(y_{0}, a\right)\right)=\int_{\mathbb{R}^{2}} 1_{B\left(y_{0}, a\right)}(t) d m_{x, z}(t)$, which can also be denoted by $\mathcal{T}_{x}\left(1_{B\left(y_{0}, a\right)}\right)(z)$ is defined almost every where on \mathbb{R}^{2} (see [1] p. 17), measurable and for all function h in $\mathcal{D}\left(\mathbb{R}^{2}\right)$ we have

$$
\begin{equation*}
\int_{\mathbb{R}^{2}} m_{x, z}\left(B\left(y_{0}, a\right)\right) h(z) \mathcal{A}_{k}(z) d z=\int_{B\left(y_{0}, a\right)} \mathcal{T}_{x}(\breve{h})(-t) \mathcal{A}_{k}(t) d t \tag{3.4}
\end{equation*}
$$

Proof. For all $x \in \mathbb{R}^{2}$ and $n \in \mathbb{N} \backslash\{0\}$, the function $\mathcal{T}_{x}\left(f_{n}\right)$ belongs to $\mathcal{D}\left(\mathbb{R}^{2}\right)$. Then we obtain the results of this proposition from the monotonic convergence theorem and the relation (3.3).

Remark 3.3. There exists a σ-algebra \mathfrak{m} in \mathbb{R}^{2} which contains all Borel sets in \mathbb{R}^{2}. Then for all $E \in \mathfrak{m}$, the function $z \rightarrow m_{x, z}(E)$ is defined almost every where on \mathbb{R}^{2}, measurable and we have the following relation

$$
\begin{equation*}
\int_{\mathbb{R}^{2}} m_{x, z}(E) h(z) \mathcal{A}_{k}(z) d z=\int_{E} \mathcal{T}_{x}(\breve{h})(-t) \mathcal{A}_{k}(t) d t, \quad h \in \mathcal{D}\left(\mathbb{R}^{2}\right) \tag{3.5}
\end{equation*}
$$

In this section we shall prove that for all $x \in \mathbb{R}_{\text {reg }}^{2}, t \in \mathbb{R}^{2}$, the measures $m_{x, t}$ and $m_{x, t}^{W}$ given by the relations (1.1) and (1.3) are absolute continuous with respect to the Lebesgue measure on \mathbb{R}^{2}.

3.1. Absolute continuity of the measure $m_{x, z}$.

Notation. We denote by λ the Lebesgue measure on \mathbb{R}^{2}.
Proposition 3.4. For $x \in \mathbb{R}_{r e g}^{2}, z \in \mathbb{R}^{2}$, there exists a unique positive function $\ominus(x, z,$.$) integrable on \mathbb{R}^{2}$ with respect to the Lebesgue measure λ, and a positive measure $m_{x, z}^{s}$ on \mathbb{R}^{2} such that for every Borel set E, we have

$$
\begin{equation*}
m_{x, z}(E)=\int_{E} \ominus(x, z, t) d t+m_{x, z}^{s}(E) \tag{3.6}
\end{equation*}
$$

Proof. We deduce (3.6) from (1.1) and Theorem 6.9 of [6] p.129-130, and Theorem 8.6 and its Corollary of [6] p. 166.

Remark 3.5.

i) The supports of the function $t \rightarrow \ominus(x, z, t)$ and the measure $m_{x, z}^{s}$ are contained in the set $\left\{t \in \mathbb{R}^{2} ;|\|x\|-\|z\|| \leq\|t\| \leq\|x\|+\|z\|\right\}$.
ii) The measures $m_{x, z}^{s}$ and the Lebesgue mesure λ are mutually singular.
iii) From Theorem 8.6, p. 166 and Definition 8.3, p.164, of [6], we have

$$
\begin{equation*}
\ominus(x, z, t)=\lim _{a \rightarrow 0} \frac{m_{x, z}(B(t, a))}{\lambda(B(t, a)} . \tag{3.7}
\end{equation*}
$$

Proposition 3.6. We consider $x \in \mathbb{R}_{\text {reg }}^{2}$ and a positive function h in $\mathcal{D}\left(\mathbb{R}^{2}\right)$ with support contained in the ball $\bar{B}(0, R), R>0$.
i) For all Borel set E, we have

$$
\begin{equation*}
\int_{E} \mathcal{N}_{x}^{h}(t) d t=\int_{\bar{B}(0, R)} h(z) m_{x, z}^{s}(E) \mathcal{A}_{k}(z) d z, \tag{3.8}
\end{equation*}
$$

where
$\mathcal{N}_{x}^{h}(t)=\mathcal{T}_{x}(\breve{h})(-t) \mathcal{A}_{k}(t)-\int_{\bar{B}(0, R)} \ominus(x, z, t) h(z) \mathcal{A}_{k}(z) d z$.
ii) We have

$$
\begin{equation*}
\forall t \in \mathbb{R}^{2}, \mathcal{N}_{x}^{h}(t) \geq 0 . \tag{3.10}
\end{equation*}
$$

Proof.
i) By using the relations (3.5), (3.6), we obtain

$$
\begin{aligned}
\int_{E} \mathcal{T}_{x}(\breve{h})(-t) \mathcal{A}_{k}(t) d t & =\int_{\bar{B}(0, R)} m_{x, z}(E) h(z) \mathcal{A}_{k}(z) d z \\
& =\int_{\bar{B}(0, R)}\left[\int_{E} \ominus(x, z, t) d t+m_{x, z}^{s}(E)\right] h(z) \mathcal{A}_{k}(z) d z
\end{aligned}
$$

We deduce (3.8) by applying Fubini-Tonelli's theorem to the second member.
ii) From the relation (3.8), the positivity of the measure $m_{x, z}^{s}$ implies that for all Borel set E, we have

$$
\int_{E} \mathcal{N}_{x}^{h}(t) d t \geq 0
$$

Thus

$$
\forall t \in \mathbb{R}^{2}, \mathcal{N}_{x}^{h}(t) \geq 0 .
$$

Proposition 3.7. The measure Λ_{x}^{h} on \mathbb{R}^{2} given for all Borel set E by

$$
\begin{equation*}
\Lambda_{x}^{h}(E)=\int_{E} \mathcal{N}_{x}^{h}(t) d t \tag{3.11}
\end{equation*}
$$

is positive and bounded.
Proof.

- The relation (3.10) gives the positivity of the measure Λ_{x}^{h}.
- From the relation (3.11) (3.8), for all Borel set E we have

$$
\begin{equation*}
\Lambda_{x}^{h}(E) \leq \int_{\bar{B}(0, R)}\left\|m_{x, z}^{s}\right\| h(z) \mathcal{A}_{k}(z) d z . \tag{3.12}
\end{equation*}
$$

On the other hand by using (3.6), we obtain for all $z \in \mathbb{R}_{r e g}^{2}$,

$$
m_{x, z}^{s}(E) \leq m_{x, z}(E),
$$

thus

$$
\left\|m_{x, z}^{s}\right\| \leq\left\|m_{x, z}\right\|=1 .
$$

By using this result, the relation (3.12) implies that for all Borel set E, we have

$$
\Lambda_{x}^{h}(E) \leq M_{h},
$$

where

$$
M_{h}=\int_{\bar{B}(0, R)} h(z) \mathcal{A}_{k}(z) d z .
$$

Then the measure Λ_{x}^{h} is bounded.
Proposition 3.8. Let $x \in \mathbb{R}_{\text {reg }}^{2}$ and h be a positive function in $\mathcal{D}\left(\mathbb{R}^{2}\right)$ with support contained in the ball $\bar{B}(0, R), R>0$.
i) For all Borel set E we have

$$
\begin{equation*}
\Lambda_{x}^{h}(E)=0 \tag{3.13}
\end{equation*}
$$

ii) For $x, t \in \mathbb{R}_{r e g}^{2}$, we have

$$
\begin{equation*}
\mathcal{T}_{x}(h)(t)=\int_{\bar{B}(0, R)} h(z) \mathcal{W}(x, t, z) \mathcal{A}_{k}(z) d z, \tag{3.14}
\end{equation*}
$$

with

$$
\begin{equation*}
\mathcal{W}(x, t, z)=\frac{\ominus(x,-z,-t)}{\mathcal{A}_{k}(t)} \tag{3.15}
\end{equation*}
$$

Proof.
i) From the relations (3.11), (3.8), for all Borel set E the measure Λ_{x}^{h} possesses also the following form

$$
\begin{equation*}
\Lambda_{x}^{h}(E)=\int_{\bar{B}(0, R)} m_{x, z}^{s}(E) h(z) \mathcal{A}_{k}(z) d z \tag{3.16}
\end{equation*}
$$

On the other hand from Proposition 3.7 the measure Λ_{x}^{h} is absolute continuous with respect to the Lebesgue measure λ and from Remark 3.5 ii) the measure $m_{x, z}^{s}, z \in \bar{B}(0, R)$ and the Lebesgue measure λ are mutually singular. Then from Proposition 6.8,(f), p. 129 , of [6], the measure Λ_{x}^{h} and $m_{x, z}^{s}, z \in \bar{B}(0, R)$, are mutually singular. By using the definition of measures mutually singular (see p. 128 of [6]), we deduce (3.13) from (3.16).
ii) By using the i) and (3.11), (3.9), we get

$$
\begin{equation*}
\mathcal{T}_{x}(\breve{h})(-t) \mathcal{A}_{k}(t)=\int_{\bar{B}(0, R)} \ominus(x, z, t) h(z) \mathcal{A}_{k}(z) d z \tag{3.17}
\end{equation*}
$$

As

$$
\mathcal{A}_{k}(t) \neq 0 \Leftrightarrow t \in \mathbb{R}_{r e g}^{2},
$$

then for $t \in \mathbb{R}_{\text {reg }}^{2}$, we deduce (3.14), (3.15) from (3.17).

Theorem 3.9. For all f in $\mathcal{E}\left(\mathbb{R}^{2}\right)$ and $x, t \in \mathbb{R}_{r e g}^{2}$, we have

$$
\begin{equation*}
\mathcal{T}_{x}(f)(t)=\int_{\mathbb{R}^{2}} f(z) \mathcal{W}(x, t, z) \mathcal{A}_{k}(z) d z \tag{3.18}
\end{equation*}
$$

with

$$
\begin{equation*}
\forall z \in \mathbb{R}^{2}, \quad \mathcal{W}(x, t, z)=\mathcal{W}(t, x, z) \tag{3.19}
\end{equation*}
$$

Proof. We obtain (3.18), (3.19) by writing $f=f^{+}-f^{-}$and by using Proposition 3.8, and the properties i), ii) of the operator \mathcal{T}_{x}.

Remark 3.10. Theorem 3.9 shows that for all $x \in \mathbb{R}_{r e g}^{2}, t \in \mathbb{R}^{2}$ the measure $m_{x, t}$ is absolute continuous with respect to the measure $\mathcal{A}_{k}(z) d z$. More precisely for all $z \in \mathbb{R}^{2}$, we have

$$
\begin{equation*}
d m_{x, t}(z)=\mathcal{W}(x, t, z) \mathcal{A}_{k}(z) d z \tag{3.20}
\end{equation*}
$$

Corollary 3.11.
i) For all $\lambda \in \mathbb{C}^{2}$ and $x, t \in \mathbb{R}_{r e g}^{2}$, we have

$$
\begin{equation*}
G_{\lambda}(x) G_{\lambda}(t)=\int_{\mathbb{R}^{2}} G_{\lambda}(z) \mathcal{W}(x, t, z) \mathcal{A}_{k}(z) d z \tag{3.21}
\end{equation*}
$$

ii) For all $x, t \in \mathbb{R}_{r e g}^{2}$, we have

$$
\begin{equation*}
\int_{\mathbb{R}^{2}} \mathcal{W}(x, t, z) \mathcal{A}_{k}(z) d z=1 \tag{3.22}
\end{equation*}
$$

iii) For all $x, t \in \mathbb{R}_{r e g}^{2}$, the support of the function $z \rightarrow \mathcal{W}(x, t, z)$ is contained in the set $\left\{z \in \mathbb{R}^{d} ;|\|x\|-\|t\|| \leq\|z\| \leq\|x\|+\|t\|\right\}$.

Proof. We deduce the results of this Corollary from (1.1), (3.20), Theorem 3.9 and the product formula for the Opdam-Cherednik kernel $G_{\lambda}, \lambda \in \mathbb{C}^{2}$, (see [9] p. 24).

3.2. Absolute continuity of the measure $m_{x, t}^{W}$.

Proposition 3.12. For all $x, t \in \mathbb{R}_{\text {reg }}^{2}$ the measure $m_{x, t}^{W}$ is absolute continuous with respect to the Lebesgue measure on \mathbb{R}^{2}. More precisely for all $z \in \mathbb{R}^{2}$, we have

$$
\begin{equation*}
d m_{x, t}^{W}(z)=\mathcal{W}^{W}(x, t, z) \mathcal{A}_{k}(z) d z \tag{3.23}
\end{equation*}
$$

where $\mathcal{W}^{W}(x, t, z)$ is the function given by

$$
\begin{equation*}
\mathcal{W}^{W}(x, t, z)=\frac{1}{|W|^{2}} \sum_{w, w^{\prime} \in W} \mathcal{W}\left(w x, w^{\prime} t, z\right) \tag{3.24}
\end{equation*}
$$

Proof. The relation (1.3) and Theorem 3.9 imply (3.23), (3.24).
Corollary 3.13.
i) For all $\lambda \in \mathbb{C}^{2}$ and $x, t \in \mathbb{R}_{r e g}^{2}$, we have

$$
\begin{equation*}
F_{\lambda}(x) F_{\lambda}(t)=\int_{\mathbb{R}^{2}} F_{\lambda}(z) \mathcal{W}^{W}(x, t, z) \mathcal{A}_{k}(z) d z \tag{3.25}
\end{equation*}
$$

ii) For all $x, t \in \mathbb{R}_{r e g}^{2}$, we have

$$
\begin{equation*}
\int_{\mathbb{R}^{2}} \mathcal{W}^{W}(x, t, z) \mathcal{A}_{k}(z) d z=1 \tag{3.26}
\end{equation*}
$$

iii) For all $x, t \in \mathbb{R}_{r e g}^{2}$, the support of the function $z \rightarrow \mathcal{W}^{W}(x, t, z)$ is contained in the set $\left\{z \in \mathbb{R}^{2} ;|\|x\|-\|t\|| \leq\|z\| \leq\|x\|+\|t\|\right\}$.

Proof. We obtain the results of this Corollary from the relation (1.2), Proposition 3.12, and the product formula for the Heckman-Opdam hypergeometric function $F_{\lambda}, \lambda \in \mathbb{C}^{2}$, (see [9] p. 27).

References

[1] N. Bourbaki, Elements de Mathematiques Fascule XXI. Intégration des mesures, Chapitre 5, Hermann, Paris, 1967.
[2] I. Cherednik, A unification of Knizhnik-Zamolodchnikov equations and Dunkl operators via affine Hecke algebras, Invent. Math. 106 (1991), 411-432.
[3] G.H.Heckman and E.M.Opdam, Root systems and hypergeometric functions. I, Compositio. Math. 64 (1987), 329-352.
[4] G.J.Heckman and H. Schlichtkrull, Harmonic analysis and special functions on symmetric spaces, Academic Press 1994.
[5] E.M.Opdam, Harmonic analysis for certain representations of graded Hecke algebras, Acta Math. 175 (1995), 75-121.
[6] W. Rudin. Real and complex analysis, Mc Graw Hill Inc. second edition. 1974.
[7] B.Schapira, Contributions to the hypergeometric function theroy of Heckman and Opdam : sharp estimates, Schwartz space, heat kernel, Geom. Funct. Anal. 18 (2008), 222-250.
[8] K. Trimèche, Harmonic analysis associated with the Cherednik operators and the Heckman-Opdam theory, Adv. Pure Appl. Math. 2 (2011), 23-46.
[9] K. Trimèche, The positivity of the hypergeometric translation operators associated to the Cherednik operators and the Heckman-Opdam theory attached to the root system of type B_{2} and C_{2}, Korean J. Math. 22 (1) (2014), 1-28.

Khalifa Trimèche
Department of Mathemtaics
Faculty of sciences of Tunis
University Tunis El-Manar
CAMPUS, 2092 Tunis, Tunisia
E-mail: khlifa.trimeche@fst.rnu.tn

[^0]: Received June 9, 2014. Revised December 10, 2014. Accepted December 10, 2014.
 2010 Mathematics Subject Classification: 51F15, 33C80, 33E30, 47 B 34.
 Key words and phrases: Hypergeometric translation operators, Absolute continuity of the representing measures, Cherednik operators, Heckman-Opdam theory

 The work here is supported by FRGSTOPDOWN/2013/ST06/UKM/01/1 and the authors would like to thank the referee for the comments to improve the manuscript.
 © The Kangwon-Kyungki Mathematical Society, 2014.
 This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

