DOI QR코드

DOI QR Code

다구찌 방법을 통한 볼 엔드밀 절삭날 형상이 가공면 거칠기에 미치는 영향 분석

Analysis of Cutting Edge Geometry Effect on Surface Roughness in Ball-end Milling Using the Taguchi Method

  • Cho, Chul Yong (Department of Mechanical Engineering, Chonbuk National University) ;
  • Ryu, Shi Hyoung (Department of Mechanical Engineering, Chonbuk National University)
  • 투고 : 2014.09.05
  • 심사 : 2014.11.24
  • 발행 : 2014.12.15

초록

In this study, the effect of cutting edge geometry, such as helix and rake angles, on surface roughness in ball-end milling is investigated by using the Taguchi method. A set of experiments adopting the $L_{27}(3^{13})$ design with an orthogonal array are conducted with special WC ball-end mills having different helix and rake angles. Analysis of variance (ANOVA) is performed to analyze the effects of tool geometry and machining parameters, such as cutting speed, feed per tooth, and depth of cut, on surface roughness. The ANOVA results reveal that helix and rake angles are critical factors affecting surface roughness; the interaction of helix angle and cutting speed is also important. This research can contribute to novel cutting edge designs of ball-end mills and optimization of cutting parameters.

키워드

참고문헌

  1. Yang, M. Y., Park, H. D., 1991, The Prediction of Cutting Force in Ball End Milling, Int. J. Mach. Tools Manufact. 31:1 45-54. https://doi.org/10.1016/0890-6955(91)90050-D
  2. Lim, E. M., Menq, C. H., 1995, The Prediction of Dimensional Error for Sculptured Surface Productions Using The Ball End Milling Process, Int. J. Mach. Tools Manufact. 35:8 1171-1185. https://doi.org/10.1016/0890-6955(94)00045-L
  3. Yucesan, G., Altintas, Y., 1996, Prediction of Ball End Milling Forces, J. Eng. Ind. 118:1 95-103. https://doi.org/10.1115/1.2803652
  4. Lee, P., Altintas, Y., 1996, Prediction of Ball End Forces from Orthogonal Cutting Data, Int. J. Mach. Tools Manufact. 36:9 1059-1072. https://doi.org/10.1016/0890-6955(95)00081-X
  5. Kim, G. M., Chu, C. N., 1998, Mean Cutting Force Prediction in Ball End Milling of Slanted Surface Using Force Map, J. Korean Soc. Precis. Eng. 15:12 212-219.
  6. Feng, H. Y., Menq, C. H., 1996, A Flexible Ball-end Milling System Model for Cutting Force and Machining Error Prediction, J. Manufact. Sci. Eng. 118:4 461-469. https://doi.org/10.1115/1.2831055
  7. Sharman, A., Dewes, R. C., Aspinwall, D. K., 2001, Tool Life when High Speed Ball Nose End Milling Inconel 718, J. Mat. Proc. Tech. 118:1 29-35. https://doi.org/10.1016/S0924-0136(01)00855-X
  8. Ning, L., Veldhuis, S. C., 2006, Mechanistic Modeling of Ball End Milling Including Tool Wear, J. Manufact. Proc. 8:1 21-28. https://doi.org/10.1016/S1526-6125(06)70098-6
  9. Cho, C. Y., Mun, S. D., Ryu, S. H., 2006, Effect of Cusp on the Cutting Characteristics and Tool Wear of Semifinishing in Ball End Milling, Trans. KSMTE 15:5 79-84.
  10. Yoon, J. H., 2007, Two dimensional Representation of Machining Geometry and Tool Path Generation for Ball end Milling of Sculptured Surfaces, Int. J. Prod. Res. 45:14 3151-3164. https://doi.org/10.1080/00207540600786657
  11. Chen, T., Shi, Z., 2008, A Tool Path Generation Strategy for Three axis Ball end Milling of Free form Surfaces, J. Mat. Proc. Tech. 208:1 259-263. https://doi.org/10.1016/j.jmatprotec.2007.12.142
  12. Ng, E. G., Lee, D. W., Sharman, A. R. C., Dewes, R. C., Aspinwall, D. K., Vigneau, J., 2000, High Speed Ball Nose End Milling of Inconel 718, CIRP Ann. 49:1 41-46. https://doi.org/10.1016/S0007-8506(07)62892-3
  13. Ning, Y., Rahman, M., Wong, Y. S., 2001, Investigation of Chip Formation in High Speed End Milling, J. Mat. Proc. Tech. 113:1 360-367. https://doi.org/10.1016/S0924-0136(01)00628-8
  14. Aoyama, H., Kisinami, T., Saito, K., 1987, Study on Development and Cutting Performance of Elliptic Ball End Mill, J. Japan Soc. Precis. Eng. 53:3 461-466. https://doi.org/10.2493/jjspe.53.461
  15. Jin, K., Tsukasa, K., Shunichi., K., Satoru, I., 2001, Wear Estimation of Ball End Mill and Its Application to Precision Machining of Curved Surface, J. Japan Soc. Precis. Eng. 67:9 1427-1431. https://doi.org/10.2493/jjspe.67.1427
  16. Lu, Y., Takeuchi, Y., Takahashi, I., Anzai, M., Kase, K., 2003, Fabrication of Ball End Mills for High Speed Milling and Their Cutting Characteristics, J. Japan Soc. Precis. Eng. 69:4 530-535. https://doi.org/10.2493/jjspe.69.530
  17. Chen, F., Hu, S., Yin, S., 2012, A Novel Mathematical Model for Grinding Ball end Milling Cutter with Equal Rake and Clearance Angle, Int. J. Adv. Manuf. Technol. 63:1 109-116. https://doi.org/10.1007/s00170-011-3889-y
  18. Ghani, J. A., Choudhury, I. A., Hassan, H. H., 2004, Application of Taguchi Method in the Optimization of End Milling Parameters, J. Mat. Proc. Tech. 145:1 84-92. https://doi.org/10.1016/S0924-0136(03)00865-3
  19. Kivak, T., 2014, Optimization of Surface Roughness and Flank Wear Using the Taguchi Method in Milling of Hadfield Steel with PVD and CVD Coated Inserts, Measurement 50 19-28. https://doi.org/10.1016/j.measurement.2013.12.017

피인용 문헌

  1. Selection of the Efficient Superfinishing Condition on an Anodized Al7075 Surface in Experimental Design vol.33, pp.12, 2016, https://doi.org/10.7736/KSPE.2016.33.12.993
  2. Taguchi-based robust design for the footwear outsole pelletizing machine cutter vol.44, pp.4, 2016, https://doi.org/10.7469/JKSQM.2016.44.4.935
  3. A Study on the End Mill Shape Design for Machining of High Hardness Die Steels by Comparison of Cutting Force vol.36, pp.2, 2014, https://doi.org/10.7736/kspe.2019.36.2.141
  4. Cutting Characteristics and Deformation Analysis for Chord and Side Fitting Parts in an Aircraft Bulkhead vol.29, pp.1, 2020, https://doi.org/10.7735/ksmte.2020.29.1.74