DOI QR코드

DOI QR Code

지진취약도를 통한 철골모멘트골조의 연간 손실 평가

Annual Loss Probability Estimation of Steel Moment-Resisting Frames(SMRFs) using Seismic Fragility Analysis

  • 전새미 (서울시립대학교 건축공학과) ;
  • 신동현 (서울시립대학교 건축공학과) ;
  • 김형준 (서울시립대학교 건축공학과)
  • Jun, Saemee (Department of Architectural Engineering, University of Seoul) ;
  • Shin, Dong-Hyeon (Department of Architectural Engineering, University of Seoul) ;
  • Kim, Hyung-Joon (Department of Architectural Engineering, University of Seoul)
  • 투고 : 2014.11.17
  • 심사 : 2014.12.02
  • 발행 : 2014.12.31

초록

구조물의 내용연수 동안 예상되는 지진에 대한 피해와 손실을 최소화하는 것이 내진설계의 최종적인 목표로 볼 수 있다. 이러한 목표를 만족시키기 위한 개념으로 지진하중에 대한 구조물의 손상확률을 나타내는 지진취약도를 작성하여 지진에 대한 구조물의 확률론적 성능평가를 수행한 후, 해당 지역에서 발생 가능한 지진에 대한 연간 초과확률로 표현되는 지진위험도를 활용하여 연간 손실 발생확률을 산정하는 절차를 제시한다. 본 연구는 미국 강진지역의 지진하중을 고려하여 설계된 철골모멘트골조에 대해 취약도를 정량적으로 평가하고 연간 손실 발생확률을 예측하다. 또한 HAZUS의 철골모멘트골조 대표건축물에 대한 손실 평가결과를 비교하였으며, 그 결과 HAZUS에 의한 연간손실이 보수적으로 산정됨을 알 수 있었다. 제시된 방법으로부터 해당 구조물의 내진성능 및 연간 손실 평가를 할 수 있으며, 향후 관련 연구에 활용할 수 있을 것으로 판단된다.

The ultimate goal of seismic design is to reduce the probable losses or damages occurred during an expected earthquake event. To achieve this goal, this study represents a procedure that can estimate annual loss probability of a structure damaged by strong ground motion. First of all, probabilistic seismic performance assessment should be performed using seismic fragility analyses that are presented by a cumulative distribution function of the probability in each exceedance structural damage state. A seismic hazard curve is then derived from an annual frequency of exccedance per each ground motion intensity. An annual loss probability function is combined with seismic fragility analysis results and seismic hazard curves. In this paper, annual loss probabilities are estimated by the structural fragility curve of steel moment-resisting frames(SMRFs) in San Francisco Bay, USA, and are compared with loss estimation results obtained from the HAZUS methodology. It is investigated from the comparison that seismic losses of the SMRFs calculated from the HAZUS method are conservatively estimated. The procedure presented in this study could be effectively used for future studies related with structural seismic performance assessment and annual loss probability estimation.

키워드

참고문헌

  1. AIK (2009) Korean Building Code for Structures, KBC 2009, Architectural Institute of Korea, Seoul, p.769.
  2. ATC (1985) Earthquake Damage Evaluation Data for California, ATC-13, Applied Technology Council, California, p.492.
  3. ATC (1996) Seismic Evaluation and Retrofit of Concrete Buildings Vol. 1, ATC-40, Applied Technology Council, California, p.346.
  4. ASCE (2010) Minimum Design Loads for Buildings and Other Structures, ASCE/SEI 7-10, American Society of Civil Engineers, Virginia, p.658.
  5. Beak, D.G., Kwon, K.H., Kim, J.K. (2012) Fragility Analysis of Staggered Wall Structures, J. Comput. Struct. Eng. Inst. Korea, 25(5), pp.397-404. https://doi.org/10.7734/COSEIK.2012.25.5.397
  6. Carr, A.J. (2009) Ruaumoko Manual. User Manual for the 2-Dimensional Version : Ruaumoko 2D Vol. 2, University of Canterbury, New Zealand, p.98.
  7. Chopra, A.K. (2012) Dynamics of Structures: Theory and Applications to Earthquake Engineering, 4th Edition, Prentice Hall, New Jersey, p.992.
  8. Cornell, C.A., Krawinkler, H. (2000) Progress and Challenges in Seismic Performance Assessment, 3(2), PEER Center News, http://peer.berkeley.edu/news/2000spring/index.html.(accessed Nov., 14, 2014)
  9. FEMA (2000) Prestandard and Commentary for the Seismic Rehabilitation of Buildings, FEMA 356, Federal Emergency Management Agency, Washington, D.C., p.518.
  10. FEMA (2003) HAZUS-MH MR4 Technical Manual, Multi-hazard Loss Estimation Methodology Earthquake Model, Federal Emergency Management Agency, Washington, D.C., p.712.
  11. FEMA (2009) Quantification of Building Seismic Performance Factors, FEMA P695, Federal Emergency Management Agency, Washington, D.C., p.421.
  12. FEMA (2012) Seismic Performance Assessment of Buildings Vol. 1, FEMA P-58-1, Federal Emergency Management Agency, Washington, D.C., p.319.
  13. Kircher, C.A., Whitman, P.V. (1997) Estimation of Earthquake Losses to Buildings, Earthquake Spectra, 13(4), pp.703-720. https://doi.org/10.1193/1.1585976
  14. Ko, H., Park, Y.K., Lee, D.G. (2009) Fragility Analysis of RC Moment Resisting Frame with Masonry Infill Walls, J. Comput. Struct. Eng. Inst. Korea, 22(4), pp.355-362.
  15. NEMA (2009) Development of the Seismic Fragility Function for Buildings in Korea, National Emergency Management Agency in Korea, Seoul, p.418.
  16. Ramirez, O.M., Constantinou, M.C., Kircher, C.A., Whittaker, A.S., Johnson, M.W., Gomez, J.D., Chrysostomou, C.Z. (2000) Development and Evaluation of Simplified Procedures for Analysis and Design of Buildings with Passive Energy Dissipation Systems, MCEER 00-0010, Revision 1, Multidisciplinary Center for Earthquake Engineering Research, University at Buffalo, State University of New York, Buffalo.

피인용 문헌

  1. Uncertainties Influencing the Collapse Capacity of Steel Moment-Resisting Frames vol.28, pp.4, 2015, https://doi.org/10.7734/COSEIK.2015.28.4.351