DOI QR코드

DOI QR Code

Microstructure and plasma resistance of Y2O3 ceramics

Y2O3 세라믹스의 미세구조 및 플라즈마 저항성

  • Lee, Hyun-Kyu (Dept., of New Material Engineering, Chosun University) ;
  • Lee, Seokshin (Dept., of Mechanical Engineering, Chosun University) ;
  • Kim, Bi-Ryong (Dept., of New Material Engineering, Chosun University) ;
  • Park, Tae-Eon (Ecotechkorea Co., Ltd., Jeonnam Advanced Ceramics Center) ;
  • Yun, Young-Hoon (Dept., of Hydrogen & Fuel Cell Tech., Dongshin University)
  • 이현규 (조선대학교 신소재공학과) ;
  • 이석신 (조선대학교, 기계공학과) ;
  • 김비룡 (조선대학교 신소재공학과) ;
  • 박태언 ((주)에코텍코리아, 세라믹종합지원센터) ;
  • 윤영훈 (동신대학교 수소에너지학과)
  • Received : 2014.10.23
  • Accepted : 2014.12.05
  • Published : 2014.12.31

Abstract

$Y_2O_3$ ceramic specimens were fabricated from the granular powder, obtained by spray drying process from the slurry. The slurry was prepared by mixing PVA binder, NaOH for Ph control, PEG and $Y_2O_3$ powder. The $Y_2O_3$ specimen was shaped in size of ${\phi}14mm$ and then sintered at $1650^{\circ}C$. The characteristics, microstructure, densities and plasma resistance of the $Y_2O_3$ specimens were investigated with the function of forming pressure and sintering time. $Y_2O_3$ specimens were exposed under the $CHF_3/O_2/Ar$ plasma, the dry etching treatment of specimens was carried out by the physical reaction etching of $Ar^+$ ion beam and the chemical reaction etching of $F^-$ ion decomposed from $CHF_3$. With increasing sintering time, $Y_2O_3$ specimens showed relatively high density and strong resistance in plasma etching test.

$Y_2O_3$ 세라믹 소결체를 제작하기 위해, $Y_2O_3$ 분말을 분산한 상태에서 슬러리에 pH 조절제인 NaOH를 첨가하였으며 결합제로는 PVA, 가소제로는 PEG를 첨가하여 열분무 건조 공정을 거쳐 $Y_2O_3$ 과립형 분말을 제조하였다. ${\phi}14mm$ 크기의 $Y_2O_3$ 세라믹 성형체를 성형하고, $1650^{\circ}C$의 온도에서 소결하여 $Y_2O_3$ 세라믹 소결체를 제작하였다. $Y_2O_3$ 소결체의 미세구조, 밀도 및 내플라즈마 특성이 성형압력 및 소결시간에 따라 분석되었다. $Y_2O_3$ 소결체는 $CHF_3/O_2/Ar$ 플라즈마에 노출시켜, $Ar^+$ 이온빔에 의한 물리적반응 식각과 $CHF_3$로부터 분해된, $F^-$ 이온에 의한 화학적반응 식각에 의한 건식 식각 처리가 이루어졌다. 본 연구에서 $Y_2O_3$ 소결체 소결시간의 증가에 따라, 비교적 높은 밀도를 나타내었으며, 내플라즈마 특성이 향상되는 것으로 나타났다.

Keywords

References

  1. G.S. May and C.J. Spanos, "Fundamentals of semiconductor manufacturing and process control" (IEEE, New Jersey, 2006) 98.
  2. M. Kodo, K. Soga, H. Yoshida and T. Yamamoto, "Doping effect of divalent cations on sintering of polycrystalline yttria", J. Eur. Ceram. Soc. 30 (2010) 2741. https://doi.org/10.1016/j.jeurceramsoc.2010.05.028
  3. R. Chaima, A. Shlayer and C. Estournes, "Densification of nanocrystalline $Y_2O_3$ ceramic powder by spark plasma sintering", J. Eur. Ceram. Soc. 29 (2009) 91. https://doi.org/10.1016/j.jeurceramsoc.2008.05.043
  4. L. Ana, A. Ito and T. Goto, "Transparent yttria produced by spark plasma sintering at moderate temperature and pressure profiles", J. Eur. Ceram. Soc. 32 (2012) 1035. https://doi.org/10.1016/j.jeurceramsoc.2011.11.023
  5. Y. Kobayashi, "Current status and needs in the future of ceramics used for semiconductor production equipment", The 37th Seminar on High Temperature Ceramics, Japan (2005) p. 17.
  6. H. Di, Z. Yanchun, S. Xudong, L. Xiaodon and L. Shaohong, "Preparation of transparent $Y_2O_3$ ceramic by slip casting and vacuum sintering", J. Rare Earth. 30 (2012) 57. https://doi.org/10.1016/S1002-0721(10)60639-4
  7. J. Singh and D.E. Wolfe, "Nano and macro-structured component fabrication by electron beam-physical vapor deposition (EB-PVD)", J. Mater. Sci. 40 (2005) 1. https://doi.org/10.1007/s10853-005-5682-5
  8. P. Merkert, H. Hahn and J. Rodel, "Sintering behavior of nanocrystalline $Y_2O_3$", Nanostructured Mater. 12 (1999) 701. https://doi.org/10.1016/S0965-9773(99)00221-4
  9. X.H. Wang, P.L. Chen and I.W. Chen, "Two-step sintering of ceramics with constant grain-size, I. $Y_2O_3$", J. Am. Ceram. Soc. 89 (2006) 431. https://doi.org/10.1111/j.1551-2916.2005.00763.x
  10. J. Luo, Z. Zhong and J. Xu, "Yttrium oxide transparent ceramics by low-temperature microwave sintering", Mater. Res. Bull. 47 (2012) 4283. https://doi.org/10.1016/j.materresbull.2012.09.017
  11. X. Cheng, C. Yuan, N.R. Green and P.A. Withey, "Sintering mechanisms of Yttria with different additives", Ceram. Int. 39 (2013) 4791. https://doi.org/10.1016/j.ceramint.2012.11.069
  12. S. Balakrishnana, K. Ananthasivana and K.C.H. Kumar, "Studies on the synthesis and sintering of nanocrystalline yttria", Ceram. Int. 40 (2014) 6777. https://doi.org/10.1016/j.ceramint.2013.12.001
  13. H.K. Lee, S.S. Lee, B.R. Kim, T.E. Park and Y.H. Yun, "Microstructure and plasma resistance of $Y_2O_3$-BN composites", J. Korean Cryt. Growth Cryst. Technol. 24 (2014) 127. https://doi.org/10.6111/JKCGCT.2014.24.3.127
  14. J.C. Park, B.W. Lee, B.I Kim and H. Cho, "Fluorinebased inductively coupled plasma etching of ZnO film", J. Korean Cryst. Growth Cryst. Technol. 21 (2011) 230. https://doi.org/10.6111/JKCGCT.2011.21.6.230
  15. J.C. Park, O.G. Jeong, S.Y. Kim, S.J. Park, Y.H. Yun and H. Cho, "Silicon surface texturing for enhanced nanocrystalline diamond seeding efficiency", J. Korean Cryt. Growth Cryst. Technol. 23 (2013) 86. https://doi.org/10.6111/JKCGCT.2013.23.2.86
  16. D.M. Kim, S.Y. Yoon, K.B. Kim, H.S. Kim, Y.S. Oh and S.M. Lee, "Plasma resistances of yttria deposited by EB-PVD method", J. Kor. Ceram. Soc. 45 (2018) 707. https://doi.org/10.4191/KCERS.2008.45.1.707