DOI QR코드

DOI QR Code

A study on the chatter vibration characteristics simulation for cutting tooling of turning machine tool

터닝센터에서의 툴링과 채터 특성 시뮬레이션 연구

  • Hwang, Joon (Department of Aeronautical and Mechanical Design Engineering, Korea National University of Transportation)
  • 황준 (한국교통대학교 공과대학 항공.기계설계학과)
  • Received : 2014.11.24
  • Accepted : 2014.12.12
  • Published : 2014.12.31

Abstract

Machining performance is often limited by chatter vibration at the tool-workpiece interface. Chatter vibration is a type of machining self-excited vibration which originated from the variation in cutting forces and the flexibility of the machine tool structure. Cutting tooling method is one of major factor to chatter vibration in turning process. Even though lots of cutting tooling methods are developed and used in machining process, precise analysis of cutting tooling effect in view of chatter vibration behavior. This study presents numerical and experimental approaches to verify and effects of various cutting tooling geometry and clamping method on the onset of chatter vibration. Acquired knowledge from this study will apply the optimal geometry design of cutting tooling and adjusting of machining process.

가공정밀도 요구특성의 지속적인 향상에도 불구하고, 공작기계와 절삭공구를 이용한 절삭가공공정에서의 채터진동은 아직도 개선의 여지가 많이 남아있다. 특히, 더욱 고속화, 고정밀화 되고 있는 가공현장에서 채터진동의 효과적인 감소대책에 대한 다양한 연구가 필요하다. 본 연구에서는 이러한 문제점을 해결하기 위해 고정밀 공구동력계를 이용한 실시간 절삭력 측정과 유한요소해석 방법을 이용해 사용 빈도와 활용이 매우 큰 터닝센터(turning center)에서 폭넓게 적용되고 있는 3종의 절삭공구 툴링에서의 채터진동 특성을 평가하여, 공구형상 및 툴링 특성에 따른 채터진동과의 상관성을 연구하고, 향후 채터진동 저감형 공구개발을 위한 근간 기술자료로 활용코자 한다.

Keywords

References

  1. G. Totis and M. Sortino, "Development of a modular dynamometer for triaxial cutting force measurement in turning", International Journal of Machine Tool & Manufacture 51 (2011) 34. https://doi.org/10.1016/j.ijmachtools.2010.10.001
  2. J.S. Kim, B.J. Seong and S.M. Jo, "The present status and prospects of textile machinery industry", Machine and Materials 13(3) (2001) 87.
  3. D. Yan, T.I. El-wardancy and M.A. Elbestawi, "A multisensor strategy for tool failure detection in milling," The International Journal of Machine Tools & Manufacture 35 (1995) 383. https://doi.org/10.1016/0890-6955(94)E0021-A
  4. Fi.I. Compean, D. Olvera, F.J. Campa, L.N. Lopez de Lacalle, A. Elias-Zuniga and C.A. Rodriguez, "Characterization and stability analysis of a multivariable milling tool by the enhanced multistage homotopy perturbation method", The International Journal of Machine Tools & Manufacture 57 (2012) 27. https://doi.org/10.1016/j.ijmachtools.2012.01.010
  5. C.K. Chang and H. Lu, "Design optimization of cutting parameters for side milling operations with multiple performance characteristics", The International Journal of Advanced Manufacturing Technology 32 (2007) 18. https://doi.org/10.1007/s00170-005-0313-5
  6. V. Savas and C. Ozay, "The optimization of the surface roughness in the process of tangential turn-milling using genetic algorithm", The International Journal of Advanced Manufacturing Technology 37 (2007) 335.
  7. J.I. Lee, C.W. Hong and J.H. Ryu, "Separation of Nickel and Tin from copper alloy dross", J. Korean Cryst. Growth and Cryst. Technol. 24 (2014) 224. https://doi.org/10.6111/JKCGCT.2014.24.5.224
  8. J.Y. Lim, M.J. Yoon, T.H. Kim, S.Y. Kim and T.G. Kim, "A study on the mechanical properties of structure rolled steel and stainless steel for the $CO_2$ welding", J. Korean Cryst. Growth and Cryst. Technol. 23 (2013) 207. https://doi.org/10.6111/JKCGCT.2013.23.4.207

Cited by

  1. A study on the simulation for chatter vibration stability improvement of end milling process vol.26, pp.1, 2016, https://doi.org/10.6111/JKCGCT.2016.26.1.035