
 252

I. INTRODUCTION

With the development of cloud computing environments,

several JavaScript encryption libraries have been suggested

for encrypting data in a Web browser [1-5]. JavaScript

cryptography is used in mashups to provide secure cross-

origin messaging by using fragment identifiers [6]. Further-

more, Mozilla Firefox extensions are written in JavaScript.

Further, Adobe Air and Mozilla Prism are full-fledged

environments for developing desktop applications in variants

of JavaScript. The most popular encryption method is AES

[7]. The block cipher is designed for an 8-bit processor.

Even though thousands of works provide high performance

on processors with a large word size, many high-perfor-

mance block ciphers that are a considerably more favorable

choice for cloud computing environments that need thousands

of encryptions within a second have been developed.

In 2013, the low-power encryption algorithm (LEA) was

proposed by the Attached Institute of ETRI [8]. This

algorithm has software-friendly architecture, and efficient

implementation results on a wide range of computational

devices from high-end machines, such as personal computers,

to low-end microprocessors have been reported in previous

papers [8, 9]. In this paper, we present LEA implement-

ations on cloud computing, including JavaScript and ASM

JavaScript. This result can contribute to widening the usage

of the LEA block cipher, particularly in the field of cloud

computing.

The rest of this paper is organized as follows: in Section

II, we briefly discuss the basic specifications of LEA and

target platforms. In Section III, we present the novel

implementation techniques. In Section IV, we evaluate the

Received 15 August 2014, Revised 20 October 2014, Accepted 14 November 2014
*Corresponding Author Howon Kim (E-mail: howonkim@pusan.ac.kr. Tel: +82-51-510-3927)
Department of Computer Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 609-735, Korea.

 http://dx.doi.org/10.6109/jicce.2014.12.4.252 print ISSN: 2234-8255 online ISSN: 2234-8883

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-

nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Copyright ⓒ The Korea Institute of Information and Communication Engineering

J. lnf. Commun. Converg. Eng. 12(4): 252-256, Dec. 2014 Regular paper

Low-Power Encryption Algorithm Block Cipher in JavaScript

Hwajeong Seo and Howon Kim*, Member, KIICE

Department of Computer Engineering, Pusan National University, Pusan 609-735, Korea

Abstract

Traditional block cipher Advanced Encryption Standard (AES) is widely used in the field of network security, but it has high

overhead on each operation. In the 15th international workshop on information security applications, a novel lightweight and

low-power encryption algorithm named low-power encryption algorithm (LEA) was released. This algorithm has certain

useful features for hardware and software implementations, that is, simple addition, rotation, exclusive-or (ARX) operations,

non-Substitute-BOX architecture, and 32-bit word size. In this study, we further improve the LEA encryptions for cloud

computing. The Web-based implementations include JavaScript and assembly codes. Unlike normal implementation,

JavaScript does not support unsigned integer and rotation operations; therefore, we present several techniques for resolving

this issue. Furthermore, the proposed method yields a speed-optimized result and shows high performance enhancements.

Each implementation is tested using various Web browsers, such as Google Chrome, Internet Explorer, and Mozilla Firefox,

and on various devices including personal computers and mobile devices. These results extend the use of LEA encryption to

any circumstance.

Index Terms: Assembly, Block cipher, JavaScript, Low-power encryption, Web application

Open Access

Low-Power Encryption Algorithm Block Cipher in JavaScript

http://jicce.org 253

performance of the proposed methods in terms of clock

cycles and compare the results with those reported in related

works. Finally, Section V concludes this paper.

II. SPECIFICATIONS OF LEA

LEA is a block cipher with a 128-bit block. The key size

is 128, 192, and 256 bits. The number of rounds is 24, 28,

and 32 for 128-, 192- and 256-bit keys, respectively. The

process consists of key scheduling, encryption, and

decryption. The following subsection presents the notations

of the key scheduling and encryption operations.

Table 1. Key schedule for LEA

Input: master key K, constants _.

Output: round key RK.

1. T[0] = K[0], T[1] = K[1], T[2] = K[2], T[3] = K[3].

2. for i = 0 to 23

3. T[0] = ROL1(T[0] + ROLi(delta [i mod 4])

4. T[1] = ROL3(T[1] + ROLi + 1(delta [i mod 4])

5. T[2] = ROL6(T[2] + ROLi + 2(delta [i mod 4])

6. T[3] = ROL11(T[3] + ROLi + 3(delta[i mod 4])

7. RKi = (T[0], T[1], T[2], T[1], T[3], T[1])

8. end for

9. return RK

LEA: low-power encryption algorithm.

Table 2. Encryption for LEA

Input: plaintext P, round key RK.

Output: ciphertext C

1. X0[0] = P[0], X0[1] = P[1], X0[2] = P[2], X0[3] = P[3].

2. for i = 0 to 23

3. Xi + 1[0] = ROL9(Xi[0] ⊕ RKi[0]) + (Xi[1] ⊕ RKi[1])

4. Xi + 1[1] = ROR5(Xi[1] ⊕ RKi[2]) + (Xi[2] ⊕ RKi[3])

5. Xi + 1[2] = ROR3(Xi[2] ⊕ RKi[4]) + (Xi[3] ⊕ RKi[5])

6. Xi + 1[3] = Xi[0]

7. end for

8. C[0] = X24[0], C[1] = X24[1], C[2] = X24[2], C[3] = X24[3].

9. return C

LEA: low-power encryption algorithm.

Fig. 1. Computation process of ASM.javascript.

A. Key Schedule

Key scheduling generates a sequence of round keys RKi

as follows: it uses several constants for generating round

keys, which are defined as delta[8] = {0xc3efe9db, 0x44626b02,

0x79e27c8a, 0x78df30ec, 0x715ea49e, 0xc785da0a, 0xe04ef22a,

0xe5c40957}. The detailed key scheduling process for 128-

bit keys is presented in Table 1.

B. Encryption/Decryption

The LEA encryption procedure consists of 24 rounds for

128-bit keys, 28 rounds for 192-bit keys, and 32 rounds for

256-bit keys. For 24, 28, and 32 rounds, it encrypts a 128-bit

plaintext P = (P[0], P[1], P[2], P[3]) generating a 128-bit

ciphertext C = (C[0], C[1], C[2], C[3]) with 128-, 192-, and

256-bit keys. We omit the description of the decryption

procedure because it is simply considered the inverse of the

encryption procedure. The detailed encryption process for

128-bit keys is described in Table 2.

III. PROPOSED METHOD

A. Target Platform: Cloud Platforms

In some applications, client-side encryption is needed

before data are uploaded to a server cloud. Since the web

browser is becoming the universal tool for interacting with

remote servers, it is natural to ask whether existing browsers

can perform encryption without installing additional client-

side software. In [10], a small, fast AES implementation in

JavaScript for a browser has been studied. These researchers

used various lookup table approaches and native x86 code

for the implementation. Furthermore, they presented several

comparison reports on different browsers and ciphers.

However, there are no LEA results on cloud computing

environments; therefore, in this paper, we provide detailed

results for various environments. Programs written in

JavaScript and asm.js are compared. Between them, native

C-based JavaScript shows higher performance under all

circumstances. By using asm.js, we can compile all former

C/C++ applications into JavaScript with the support of

Mozilla’s Emscripten project. Emscripten takes in C/C++

code, passes it through LLVM, and converts the LLVM-

generated bytecode into JavaScript, also known as asm.js,

which is a subset of JavaScript. If the compiled asm.js code

is doing some rendering, then it is most likely being handled

by WebGL. Thus, the entire pipeline is technically making

use of JavaScript. The detailed process is depicted in Fig. 1.

This type of JavaScript highly optimizes the source code

and shows higher performance than ordinary JavaScript.

J. lnf. Commun. Converg. Eng. 12(4): 252-256, Dec. 2014

http://dx.doi.org/10.6109/jicce.2014.12.4.252 254

B. Implementation of LEA Block Cipher

Block cipher consists of key scheduling and encryption

operations. Key scheduling generates round keys that can be

precomputed offline. After round key computation, the keys

are used for the encryption. There are two main approaches

to establish block cipher computations. First, an on-the-fly

method generates a round key on the spot and then, directly

encrypts plaintext with these round key pairs. The main

benefits of the method are that storage for the round key is

not needed and the source code size is reduced by rolling the

encryption and key scheduling within the short length of the

program. The algorithm for the on-the-fly method is

presented in Table 3.

Second, a separated computation mode literally executes

the key scheduling and encryption processes separately. The

round keys are extracted and then, stored into temporal

buffers of a certain size. Then, these values are simply loaded

and used during the encryption or decryption processes. The

advantage of this method is that by eliminating the key

generation process, a fast computation time is obtained. The

algorithm for the separated mode is presented in Table 4. In

this paper, we focused on fast implementation, because

cloud computing environments need high-speed perfor-

mance and the platforms have sufficient capacity to retain

round keys and source codes.

From the viewpoint of programming, JavaScript is an

abstract form of a high-level language that enables users to

write programs easily and reduce logical errors. For the

LEA implementation, we established basic ARX operations

in the Java language because these are basic components of

LEA. The variables are explicitly defined in a 32-bit format.

Table 3. On-the-fly method

Input: master key K, constants delta, plaintext P.

Output: ciphertext C.

1. T[0] = K[0], T[1] = K[1], T[2] = K[2], T[3] = K[3].

2. X0[0] = P[0], X0[1] = P[1], X0[2] = P[2], X0[3] = P[3].

2. for i = 0 to 23

4. T[0] = ROL1(T[0] + ROLi(delta[i mod 4))

5. T[1] = ROL3(T[1] + ROLi + 1(delta[i mod 4))

6. T[2] = ROL6(T[2] + ROLi + 2(delta[i mod 4))

7. T[3] = ROL11(T[3] + ROLi + 3(delta[i mod 4))

8. Xi + 1[0] = ROL9(Xi[0] ⊕ T[0]) + (Xi[1] ⊕ T[1])

9. Xi + 1[1] = ROR5(Xi[1] ⊕ T[2]) + (Xi[2] ⊕ T[1])

10. Xi + 1[2] = ROR3(Xi[2] ⊕ T[3]) + (Xi[3] ⊕ T[1])

11. Xi + 1[3] = Xi[0]

12. end for

13. C[0] = X24[0], C[1] = X24[1], C[2] = X24[2], C[3] = X24[3].

14. return C

manually implemented the unsigned int data type. In Table 5,

However, in JavaScript, there is no unsigned int type, so we

unsigned int rotation is realized in JavaScript. JavaScript

provides unsigned int right shift (>>>) but not left shift (<<).

To convert the signed int into the unsigned int type, we

executed an unsigned int right shift by zero. The detailed

descriptions are given in Table 6. For the addition and

bitwise exclusive-or, basic arithmetic and logical operations,

such as + and ^ were exploited.

We tried to unroll the LEA encryption process. The

looped process usually presents a small program size but

slow performance due to the computation of loop handling.

However, we found strange results, which were contra-

dictory to our general knowledge. A detailed discussion of

these results is presented in the evaluation section. The

program was also executed in a separated form; therefore,

first, we conducted key scheduling and constructed whole

round key pairs, and then, we conducted encryptions with

the round keys. For a higher optimal implementation, we

compiled the C/C++ implementation using Emscripten to

output JavaScript. This method generates JavaScript from

the native C language; therefore, compared with JavaScript,

the program is highly optimized. However, the original

JavaScript implementation works on various servers and

platforms without code modifications, unlike C-based

coding.

Table 4. Separated computation method

Input: master key K, constants delta, plaintext P.

Intermediate: round key RK.

Output: ciphertext C.

1. T[0] = K[0], T[1] = K[1], T[2] = K[2], T[3] = K[3].

2. for i = 0 to 23

3. T[0] = ROL1(T[0] + ROLi(delta[i mod 4))

4. T[1] = ROL3(T[1] + ROLi + 1(delta[i mod 4))

5. T[2] = ROL6(T[2] + ROLi + 2(delta[i mod 4))

6. T[3] = ROL11(T[3] + ROLi + 3(delta[i mod 4))

7. RKi = (T[0]; T[1]; T[2]; T[1]; T[3]; T[1])

8. end for

9. X0[0] = P[0], X0[1] = P[1], X0[2] = P[2], X0[3] = P[3].

10. for i = 0 to 23

11. Xi + 1[0] = ROL9(Xi[0] ⊕ RKi[0]) + (Xi[1] ⊕ RKi[1])

12. Xi + 1[1] = ROR5(Xi[1] ⊕ RKi[2]) + (Xi[2] ⊕ RKi[3])

13. Xi + 1[2] = ROR3(Xi[2] ⊕ RKi[4]) + (Xi[3] ⊕ RKi[5])

14. Xi + 1[3] = Xi[0]

15. end for

16. C[0] = X24[0], C[1] = X24[1], C[2] = X24[2], C[3] = X24[3].

17. return C

Low-Power Encryption Algorithm Block Cipher in JavaScript

http://jicce.org 255

IV. EVALUATION

We evaluated the performance of the proposed method on

Intel Core i7-3770 powered by 3.4 GHz with 8-GB RAM.

We used 64-bit Windows 7 as the operating system, and

JavaScript 1.5 and Emscripten 1.12.0 as the development

tool and compiler, respectively. The target browsers were

Chrome 33.0.1750.154m, Internet Explorer 10, and Firefox

27.0.1. We analyzed performance by measuring the time

taken in milliseconds with getUTCMilliseconds() in terms

of the browser, language, and loop/unroll modes, and have

presented the results in Table 6. For browsers, significant

differences were observed. Internet Explorer showed the

slowest performance among browsers. The performance of

Chrome was faster than that of Firefox with JavaScript but

was slower than that with asm.js. Between JavaScript and

asm.js, JavaScript was slower than asm.js by about 41%–

90.5%. This implies that irrespective of the web browser,

asm.js had better performance but required a considerably

large amount of source code and an Emscipten environment.

For achieving further improvements, we implemented

unrolled and looped versions for LEA and tested both

versions in both languages. Strangely, JavaScript always

exhibited poorer performance in the case of the unrolled

version. We assumed that JavaScript was operated over a

virtual machine for wide computability. When the virtual

machine launched the program, a long program would

generate additional overhead. This would lead to perfor-

mance degradation from our perspective. Compared with

the previous AES implementation, LEA exhibited an

improved performance of 94.3% and 69.8% in the case of

JavaScript with Chrome and Firefox, respectively, that of

96.9%, 33.3%, and 97.1% in the case of asm.js with Chrome,

Internet Explorer, and Firefox, respectively. Only JavaScript

with Internet Explorer exhibited 14.8% degradation in

performance.

In order to show the compatibility of JavaScript, we

measured performance even on a cellphone. The target

device was Samsung Galaxy S3 supporting Cortex-A9 and

1.4-GHz quad core with 1-GB RAM. The operating system

was Android 4.3. We executed our programs over Mobile

Table 5. Rotation method on JavaScript

function ROL(input, offset){

input = ((input<<offset)>>>0) | (input>>>(32-offset));

return input

 }//Left rotation

function ROR(input, offset){

input = ((input<<32-offset)>>>0) | (input>>>(offset));

return input

 }//Right rotation

Chrome 34.0.1847, Webkit 4.3, and Firefox 28.0.1. The

detailed results are presented in Table 7. Among the three

browsers, Chrome showed the best performance. We think

that Google has highly optimized Chrome to operate over

the Android platform. Further, the basic browser of Android,

Webkit, showed the second best performance. Finally,

Firefox ranked last.

Table 6. Comparison results of JavaScript on desktop

Method Key Enc Code size

Proposed

128-bit J, C [L] 114.8 65.9 2309

128-bit J, I.E. [L] 998.8 1232.5 2309

128-bit J, FF [L] 252.9 246.5 2309

128-bit J, C [U] 114.8 240.1 5510

128-bit J, I.E. [U] 998.8 1997.5 5510

128-bit J, FF [U] 252.9 276.3 5510

128-bit A, C [L] 63.8 36.1 224642

128-bit A, I.E. [L] 688.5 716.1 224642

128-bit A, FF [L] 44.6 23.4 224642

128-bit A, C [U] 63.8 42.5 228614

128-bit A, I.E. [U] 688.5 637.5 228614

128-bit A, FF [U] 44.6 25.5 228614

AES

128-bit J, C [3] n/a 1176 6057

128-bit J, I.E. [3] n/a 1073.7 6057

128-bit J, FF [3] n/a 818.1 6057

Key and Enc are measured in cycles/byte and code size in bytes.

LEA: low-power encryption algorithm, AES: Advanced Encryption

Standard, J: JavaScript, A: asm.js, C: Chrome, I.E.: Internet Explorer, FF:

Firefox, [L]: looped, [U]: unrolled.

Table 7. Comparison results of JavaScript on mobile platform

Method Key Enc Code size

Proposed LEA

128-bit J, C [L] 1032 350 2309

128-bit J, W [L] 1466 934 2309

128-bit J, FF [L] 2345 1102 2309

128-bit J, C [U] 1032 1697 5510

128-bit J, W [U] 1466 2614 5510

128-bit J, FF [U] 2345 3132 5510

AES

128-bit J, C [3] n/a 3524 6057

128-bit J, W [3] n/a 4581 6057

128-bit J, FF [3] n/a 4012 6057

Key and Enc are measured in cycles/byte and code size in bytes.

LEA: low-power encryption algorithm, AES: Advanced Encryption

Standard, J: JavaScript, C: Chrome, W: Webkit, FF: Firefox, [L]: looped,

[U]: unrolled.

J. lnf. Commun. Converg. Eng. 12(4): 252-256, Dec. 2014

http://dx.doi.org/10.6109/jicce.2014.12.4.252 256

V. CONCLUSION

In this paper, we implemented the LEA algorithm in

JavaScript languages. In order to provide efficient

implementations, we tried to use JavaScript and ASM

JavaScript.

Furthermore, various browsers including Firefox, Internet

Explorer, and Chrome were considered. In this study, we

also explored the trade-off between code size and speed in

cloud computing environments. In the future, we intend to

focus on authenticated encryption with the proposed method

in various cloud computing environments.

ACKNOWLEDGMENTS

This research was supported by the Ministry of Science,

ICT and Future Planning (MSIP), Korea, under the

Information Technology Research Center support program

(NIPA-2014-H0301-14-1048) supervised by the National IT

Industry Promotion Agency (NIPA).

REFERENCES

[1] Marco and G. Cesare, Clipperz online password manager

[Internet], Available: http://www.clipperz.com.

[2] Google Browser Sync [Internet], Available: http://www.google.

com/tools/firefox/browsersync/.

[3] E. Styere, Javascript AES Example [Internet], Available:

http://people.eku.edu/styere/Encrypt/JS-AES.html.

[4] J. Walker, JavaScrypt: browser-based cryptography tools [Internet],

Available: http://www.fourmilab.ch/javascrypt.

[5] Javascript implementation of AES in counter mode [Internet],

Available: http://www.movable-type.co.uk/scripts/aes.html.

[6] C. Jackson, A. Barth, and J. Mitchell, “Securing frame

communication in browsers,” in Proceedings of 17th USENIX

Security Symposium, San Jose, CA, 2008.

[7] J. Daemen and V. Rijmen, The Design of Rijndael: AES - the

Advanced Encryption Standard. Heidelberg: Springer, 2002.

[8] D. Hong, J. K. Lee, D. C. Kim, D. Kwon, K. H. Ryu, and D. G.

Lee, “LEA: a 128-bit block cipher for fast encryption on common

processors,” in Information Security Applications. Heidelberg:

Springer, pp. 3-27, 2014.

[9] D. Lee, D. C. Kim, D. Kwon, and H. Kim, “Efficient hard-ware

implementation of the lightweight block encryption algorithm

LEA,” Sensors, vol. 14, no. 1, pp. 975-994, 2014.

[10] E. Stark, M. Hamburg, and D. Boneh, “Symmetric cryptography in

JavaScript,” in Proceedings of the Computer Security Applications

Conference (ACSAC2009), Honolulu, HI, pp. 373-381, 2009.

received his B.S.E.E. from Pusan National University, Pusan, Republic of Korea, in 2010. He also received his M.S.
and Ph.D. in Computer Engineering from the same university. His research interests include sensor networks,
information security, elliptic curve cryptography, and RFID security.

received his B.S.E.E. from Kyungpook National University, Daegu, Republic of Korea, in 1993, and his M.S. and
Ph.D. in Electronic and Electrical Engineering from Pohang University of Science and Technology (POSTECH),
Pohang, Republic of Korea, in 1995 and 1999, respectively. From July 2003 to June 2004, he studied with the COSY
group at the Ruhr-University of Bochum, Germany. He was a senior member of the technical staff at the Electronics
and Telecommunications Research Institute (ETRI), Daejeon, Republic of Korea. He is currently working as an
associate professor with the Department of Computer Engineering, School of Computer Science and Engineering,
Pusan National University, Busan, Republic of Korea. His research interests include RFID technology, sensor
networks, information security, and computer architecture. Currently, his main research focus is on mobile RFID
technology and sensor networks, public key cryptosystems, and their security issues. He is a member of the IEEE
and the International Association for Cryptologic Research (IACR).

http://www.clipperz.com/
http://people.eku.edu/styere/Encrypt/JS-AES.html
http://www.fourmilab.ch/javascrypt
http://www.movable-type.co.uk/scripts/aes.html

