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I. INTRODUCTION 
 

With the development of cloud computing environments, 

several JavaScript encryption libraries have been suggested 

for encrypting data in a Web browser [1-5]. JavaScript 

cryptography is used in mashups to provide secure cross-

origin messaging by using fragment identifiers [6]. Further-

more, Mozilla Firefox extensions are written in JavaScript. 

Further, Adobe Air and Mozilla Prism are full-fledged 

environments for developing desktop applications in variants 

of JavaScript. The most popular encryption method is AES 

[7]. The block cipher is designed for an 8-bit processor. 

Even though thousands of works provide high performance 

on processors with a large word size, many high-perfor-

mance block ciphers that are a considerably more favorable 

choice for cloud computing environments that need thousands 

of encryptions within a second have been developed. 

In 2013, the low-power encryption algorithm (LEA) was 

proposed by the Attached Institute of ETRI [8]. This 

algorithm has software-friendly architecture, and efficient 

implementation results on a wide range of computational 

devices from high-end machines, such as personal computers, 

to low-end microprocessors have been reported in previous 

papers [8, 9]. In this paper, we present LEA implement-

ations on cloud computing, including JavaScript and ASM 

JavaScript. This result can contribute to widening the usage 

of the LEA block cipher, particularly in the field of cloud 

computing. 

The rest of this paper is organized as follows: in Section 

II, we briefly discuss the basic specifications of LEA and 

target platforms. In Section III, we present the novel 

implementation techniques. In Section IV, we evaluate the 
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Abstract 

Traditional block cipher Advanced Encryption Standard (AES) is widely used in the field of network security, but it has high 

overhead on each operation. In the 15th international workshop on information security applications, a novel lightweight and 

low-power encryption algorithm named low-power encryption algorithm (LEA) was released. This algorithm has certain 

useful features for hardware and software implementations, that is, simple addition, rotation, exclusive-or (ARX) operations, 

non-Substitute-BOX architecture, and 32-bit word size. In this study, we further improve the LEA encryptions for cloud 

computing. The Web-based implementations include JavaScript and assembly codes. Unlike normal implementation, 

JavaScript does not support unsigned integer and rotation operations; therefore, we present several techniques for resolving 

this issue. Furthermore, the proposed method yields a speed-optimized result and shows high performance enhancements. 

Each implementation is tested using various Web browsers, such as Google Chrome, Internet Explorer, and Mozilla Firefox, 

and on various devices including personal computers and mobile devices. These results extend the use of LEA encryption to 

any circumstance. 
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performance of the proposed methods in terms of clock 

cycles and compare the results with those reported in related 

works. Finally, Section V concludes this paper. 

 

 

II. SPECIFICATIONS OF LEA 
 

LEA is a block cipher with a 128-bit block. The key size 

is 128, 192, and 256 bits. The number of rounds is 24, 28, 

and 32 for 128-, 192- and 256-bit keys, respectively. The 

process consists of key scheduling, encryption, and 

decryption. The following subsection presents the notations 

of the key scheduling and encryption operations.  

 

 

Table 1. Key schedule for LEA 

Input: master key K, constants _. 

Output: round key RK. 

1. T[0] = K[0], T[1] = K[1], T[2] = K[2], T[3] = K[3]. 

2. for i = 0 to 23 

3. T[0] = ROL1(T[0] + ROLi(delta [i mod 4]) 

4. T[1] = ROL3(T[1] + ROLi + 1(delta [i mod 4]) 

5. T[2] = ROL6(T[2] + ROLi + 2(delta [i mod 4]) 

6. T[3] = ROL11(T[3] + ROLi + 3(delta[i mod 4]) 

7. RKi = (T[0], T[1], T[2], T[1], T[3], T[1]) 

8. end for 

9. return RK 

LEA: low-power encryption algorithm. 

 

Table 2. Encryption for LEA 

Input: plaintext P, round key RK. 

Output: ciphertext C 

1. X0[0] = P[0], X0[1] = P[1], X0[2] = P[2], X0[3] = P[3]. 

2. for i = 0 to 23 

3. Xi + 1[0] = ROL9(Xi[0] ⊕ RKi[0]) + (Xi[1] ⊕ RKi[1]) 

4. Xi + 1[1] = ROR5(Xi[1] ⊕ RKi[2]) + (Xi[2] ⊕ RKi[3]) 

5. Xi + 1[2] = ROR3(Xi[2] ⊕ RKi[4]) + (Xi[3] ⊕ RKi[5]) 

6. Xi + 1[3] = Xi[0] 

7. end for 

8. C[0] = X24[0], C[1] = X24[1], C[2] = X24[2], C[3] = X24[3]. 

9. return C 

LEA: low-power encryption algorithm. 

 

 

 

Fig. 1. Computation process of ASM.javascript.  

A. Key Schedule 
 

Key scheduling generates a sequence of round keys RKi 

as follows: it uses several constants for generating round 

keys, which are defined as delta[8] = {0xc3efe9db, 0x44626b02, 

0x79e27c8a, 0x78df30ec, 0x715ea49e, 0xc785da0a, 0xe04ef22a, 

0xe5c40957}. The detailed key scheduling process for 128-

bit keys is presented in Table 1. 

 

B. Encryption/Decryption 
 

The LEA encryption procedure consists of 24 rounds for 

128-bit keys, 28 rounds for 192-bit keys, and 32 rounds for 

256-bit keys. For 24, 28, and 32 rounds, it encrypts a 128-bit 

plaintext P = (P[0], P[1], P[2], P[3]) generating a 128-bit 

ciphertext C = (C[0], C[1], C[2], C[3]) with 128-, 192-, and 

256-bit keys. We omit the description of the decryption 

procedure because it is simply considered the inverse of the 

encryption procedure. The detailed encryption process for 

128-bit keys is described in Table 2. 

 

 

III. PROPOSED METHOD 
 
A. Target Platform: Cloud Platforms 
 

In some applications, client-side encryption is needed 

before data are uploaded to a server cloud. Since the web 

browser is becoming the universal tool for interacting with 

remote servers, it is natural to ask whether existing browsers 

can perform encryption without installing additional client-

side software. In [10], a small, fast AES implementation in 

JavaScript for a browser has been studied. These researchers 

used various lookup table approaches and native x86 code 

for the implementation. Furthermore, they presented several 

comparison reports on different browsers and ciphers. 

However, there are no LEA results on cloud computing 

environments; therefore, in this paper, we provide detailed 

results for various environments. Programs written in 

JavaScript and asm.js are compared. Between them, native 

C-based JavaScript shows higher performance under all 

circumstances. By using asm.js, we can compile all former 

C/C++ applications into JavaScript with the support of 

Mozilla’s Emscripten project. Emscripten takes in C/C++ 

code, passes it through LLVM, and converts the LLVM-

generated bytecode into JavaScript, also known as asm.js, 

which is a subset of JavaScript. If the compiled asm.js code 

is doing some rendering, then it is most likely being handled 

by WebGL. Thus, the entire pipeline is technically making 

use of JavaScript. The detailed process is depicted in Fig. 1. 

This type of JavaScript highly optimizes the source code 

and shows higher performance than ordinary JavaScript. 
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B. Implementation of LEA Block Cipher 
 

Block cipher consists of key scheduling and encryption 

operations. Key scheduling generates round keys that can be 

precomputed offline. After round key computation, the keys 

are used for the encryption. There are two main approaches 

to establish block cipher computations. First, an on-the-fly 

method generates a round key on the spot and then, directly 

encrypts plaintext with these round key pairs. The main 

benefits of the method are that storage for the round key is 

not needed and the source code size is reduced by rolling the 

encryption and key scheduling within the short length of the 

program. The algorithm for the on-the-fly method is 

presented in Table 3.  

Second, a separated computation mode literally executes 

the key scheduling and encryption processes separately. The 

round keys are extracted and then, stored into temporal 

buffers of a certain size. Then, these values are simply loaded 

and used during the encryption or decryption processes. The 

advantage of this method is that by eliminating the key 

generation process, a fast computation time is obtained. The 

algorithm for the separated mode is presented in Table 4. In 

this paper, we focused on fast implementation, because 

cloud computing environments need high-speed perfor-

mance and the platforms have sufficient capacity to retain 

round keys and source codes. 

From the viewpoint of programming, JavaScript is an 

abstract form of a high-level language that enables users to 

write programs easily and reduce logical errors. For the 

LEA implementation, we established basic ARX operations 

in the Java language because these are basic components of 

LEA. The variables are explicitly defined in a 32-bit format.  

 

 

Table 3. On-the-fly method 

Input: master key K, constants delta, plaintext P. 

Output: ciphertext C. 

1. T[0] = K[0], T[1] = K[1], T[2] = K[2], T[3] = K[3]. 

2. X0[0] = P[0], X0[1] = P[1], X0[2] = P[2], X0[3] = P[3]. 

2. for i = 0 to 23 

4. T[0] = ROL1(T[0] + ROLi(delta[i mod 4)) 

5. T[1] = ROL3(T[1] + ROLi + 1(delta[i mod 4)) 

6. T[2] = ROL6(T[2] + ROLi + 2(delta[i mod 4)) 

7. T[3] = ROL11(T[3] + ROLi + 3(delta[i mod 4)) 

8. Xi + 1[0] = ROL9(Xi[0] ⊕ T[0]) + (Xi[1] ⊕ T[1]) 

9. Xi + 1[1] = ROR5(Xi[1] ⊕ T[2]) + (Xi[2] ⊕ T[1]) 

10. Xi + 1[2] = ROR3(Xi[2] ⊕ T[3]) + (Xi[3] ⊕ T[1]) 

11. Xi + 1[3] = Xi[0] 

12. end for 

13. C[0] = X24[0], C[1] = X24[1], C[2] = X24[2], C[3] = X24[3]. 

14. return C 

manually implemented the unsigned int data type. In Table 5, 

However, in JavaScript, there is no unsigned int type, so we 

unsigned int rotation is realized in JavaScript. JavaScript 

provides unsigned int right shift (>>>) but not left shift (<<). 

To convert the signed int into the unsigned int type, we 

executed an unsigned int right shift by zero. The detailed 

descriptions are given in Table 6. For the addition and 

bitwise exclusive-or, basic arithmetic and logical operations, 

such as + and ^ were exploited. 

We tried to unroll the LEA encryption process. The 

looped process usually presents a small program size but 

slow performance due to the computation of loop handling. 

However, we found strange results, which were contra-

dictory to our general knowledge. A detailed discussion of 

these results is presented in the evaluation section. The 

program was also executed in a separated form; therefore, 

first, we conducted key scheduling and constructed whole 

round key pairs, and then, we conducted encryptions with 

the round keys. For a higher optimal implementation, we 

compiled the C/C++ implementation using Emscripten to 

output JavaScript. This method generates JavaScript from 

the native C language; therefore, compared with JavaScript, 

the program is highly optimized. However, the original 

JavaScript implementation works on various servers and 

platforms without code modifications, unlike C-based 

coding. 

 

 

Table 4. Separated computation method 

Input: master key K, constants delta, plaintext P. 

Intermediate: round key RK. 

Output: ciphertext C. 

1. T[0] = K[0], T[1] = K[1], T[2] = K[2], T[3] = K[3]. 

2. for i = 0 to 23 

3. T[0] = ROL1(T[0] + ROLi(delta[i mod 4)) 

4. T[1] = ROL3(T[1] + ROLi + 1(delta[i mod 4)) 

5. T[2] = ROL6(T[2] + ROLi + 2(delta[i mod 4)) 

6. T[3] = ROL11(T[3] + ROLi + 3(delta[i mod 4)) 

7. RKi = (T[0]; T[1]; T[2]; T[1]; T[3]; T[1]) 

8. end for 

9. X0[0] = P[0], X0[1] = P[1], X0[2] = P[2], X0[3] = P[3]. 

10. for i = 0 to 23 

11. Xi + 1[0] = ROL9(Xi[0] ⊕ RKi[0]) + (Xi[1] ⊕ RKi[1]) 

12. Xi + 1[1] = ROR5(Xi[1] ⊕ RKi[2]) + (Xi[2] ⊕ RKi[3]) 

13. Xi + 1[2] = ROR3(Xi[2] ⊕ RKi[4]) + (Xi[3] ⊕ RKi[5]) 

14. Xi + 1[3] = Xi[0] 

15. end for 

16. C[0] = X24[0], C[1] = X24[1], C[2] = X24[2], C[3] = X24[3]. 

17. return C 
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IV. EVALUATION 
 

We evaluated the performance of the proposed method on 

Intel Core i7-3770 powered by 3.4 GHz with 8-GB RAM. 

We used 64-bit Windows 7 as the operating system, and 

JavaScript 1.5 and Emscripten 1.12.0 as the development 

tool and compiler, respectively. The target browsers were 

Chrome 33.0.1750.154m, Internet Explorer 10, and Firefox 

27.0.1. We analyzed performance by measuring the time 

taken in milliseconds with getUTCMilliseconds() in terms 

of the browser, language, and loop/unroll modes, and have 

presented the results in Table 6. For browsers, significant 

differences were observed. Internet Explorer showed the 

slowest performance among browsers. The performance of 

Chrome was faster than that of Firefox with JavaScript but 

was slower than that with asm.js. Between JavaScript and 

asm.js, JavaScript was slower than asm.js by about 41%–

90.5%. This implies that irrespective of the web browser, 

asm.js had better performance but required a considerably 

large amount of source code and an Emscipten environment. 

For achieving further improvements, we implemented 

unrolled and looped versions for LEA and tested both 

versions in both languages. Strangely, JavaScript always 

exhibited poorer performance in the case of the unrolled 

version. We assumed that JavaScript was operated over a 

virtual machine for wide computability. When the virtual 

machine launched the program, a long program would 

generate additional overhead. This would lead to perfor-

mance degradation from our perspective. Compared with 

the previous AES implementation, LEA exhibited an 

improved performance of 94.3% and 69.8% in the case of 

JavaScript with Chrome and Firefox, respectively, that of 

96.9%, 33.3%, and 97.1% in the case of asm.js with Chrome, 

Internet Explorer, and Firefox, respectively. Only JavaScript 

with Internet Explorer exhibited 14.8% degradation in 

performance. 

In order to show the compatibility of JavaScript, we 

measured performance even on a cellphone. The target 

device was Samsung Galaxy S3 supporting Cortex-A9 and 

1.4-GHz quad core with 1-GB RAM. The operating system 

was Android 4.3. We executed our programs over Mobile 

 

 

Table 5. Rotation method on JavaScript 

function ROL(input, offset){ 

input = ((input<<offset)>>>0) | (input>>>(32-offset)); 

return input 

 }//Left rotation 

function ROR(input, offset){ 

input = ((input<<32-offset)>>>0) | (input>>>(offset)); 

return input 

 }//Right rotation 

Chrome 34.0.1847, Webkit 4.3, and Firefox 28.0.1. The 

detailed results are presented in Table 7. Among the three 

browsers, Chrome showed the best performance. We think 

that Google has highly optimized Chrome to operate over 

the Android platform. Further, the basic browser of Android, 

Webkit, showed the second best performance. Finally, 

Firefox ranked last. 

 

 

Table 6. Comparison results of JavaScript on desktop 

Method Key Enc Code size 

Proposed 

128-bit J, C [L] 114.8 65.9 2309 

128-bit J, I.E. [L] 998.8 1232.5 2309 

128-bit J, FF [L] 252.9 246.5 2309 

128-bit J, C [U] 114.8 240.1 5510 

128-bit J, I.E. [U] 998.8 1997.5 5510 

128-bit J, FF [U] 252.9 276.3 5510 

128-bit A, C [L] 63.8 36.1 224642 

128-bit A, I.E. [L] 688.5 716.1 224642 

128-bit A, FF [L] 44.6 23.4 224642 

128-bit A, C [U] 63.8 42.5 228614 

128-bit A, I.E. [U] 688.5 637.5 228614 

128-bit A, FF [U] 44.6 25.5 228614 

AES 

128-bit J, C [3] n/a 1176 6057 

128-bit J, I.E. [3] n/a 1073.7 6057 

128-bit J, FF [3] n/a 818.1 6057 

Key and Enc are measured in cycles/byte and code size in bytes. 

LEA: low-power encryption algorithm, AES: Advanced Encryption 

Standard, J: JavaScript, A: asm.js, C: Chrome, I.E.: Internet Explorer, FF: 

Firefox, [L]: looped, [U]: unrolled. 

 

 

Table 7. Comparison results of JavaScript on mobile platform 

Method Key Enc Code size 

Proposed LEA 

128-bit J, C [L] 1032 350 2309 

128-bit J, W [L] 1466 934 2309 

128-bit J, FF [L] 2345 1102 2309 

128-bit J, C [U] 1032 1697 5510 

128-bit J, W [U] 1466 2614 5510 

128-bit J, FF [U] 2345 3132 5510 

AES 

128-bit J, C [3] n/a 3524 6057 

128-bit J, W [3] n/a 4581 6057 

128-bit J, FF [3] n/a 4012 6057 

Key and Enc are measured in cycles/byte and code size in bytes. 

LEA: low-power encryption algorithm, AES: Advanced Encryption 

Standard, J: JavaScript, C: Chrome, W: Webkit, FF: Firefox, [L]: looped, 

[U]: unrolled. 
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V. CONCLUSION 
 

In this paper, we implemented the LEA algorithm in 

JavaScript languages. In order to provide efficient 

implementations, we tried to use JavaScript and ASM 

JavaScript. 

Furthermore, various browsers including Firefox, Internet 

Explorer, and Chrome were considered. In this study, we 

also explored the trade-off between code size and speed in 

cloud computing environments. In the future, we intend to 

focus on authenticated encryption with the proposed method 

in various cloud computing environments. 
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