DOI QR코드

DOI QR Code

Effect of Combined Application of Bottom Ash and Compost on Heavy Metal Concentration and Enzyme Activities in Upland Soil

밭 토양에서 바닥재와 축분퇴비의 혼합시용이 토양의 중금속 함량 및 효소활성에 미치는 영향

  • Kim, Yong Gyun (Department of Life Science and Environmental Biochemistry, Pusan National University) ;
  • Lim, Woo Sup (Department of Life Science and Environmental Biochemistry, Pusan National University) ;
  • Hong, Chang Oh (Department of Life Science and Environmental Biochemistry, Pusan National University) ;
  • Kim, Pil Joo (Institute of Agriculture and Life Sciences)
  • 김용균 (부산대학교 생명환경화학과) ;
  • 임우섭 (부산대학교 생명환경화학과) ;
  • 홍창오 (부산대학교 생명환경화학과) ;
  • 김필주 (경상대학교 농업생명과학원)
  • Received : 2014.07.17
  • Accepted : 2014.10.27
  • Published : 2014.12.31

Abstract

BACKGROUND: Coal combustion bottom ash(BA) has high carbon and calcium content, and alkaline pH, which might improve nutrient cycling in soil related to microbial enzyme activities as it is used as soil amendment. However, it contains heavy metals such as copper(Cu), manganese (Mn), and zinc(Zn), which could cause heavy metals accumulation in soil. Compost might play a role that stabilize BA. The objective of this study was to evaluate effect of combined application of BA and compost as soil amendment on heavy metals concentration, enzyme activities, chemical properties, and crop yield in upland soil. METHODS AND RESULTS: BA was applied at the rate of 0, 20, 40, and 80 Mg/ha under different rate of compost application (0 and 30 Mg/ha) in radish (Raphanus sativus var) field. Combined application of BA and compost more improved chemical properties such as pH, EC, OM, total nitrogen, available phosphate, and exchangeable cations of soil than single application of BA. Water soluble Mn and Zn concentration in soil significantly decreased with increasing application rate of BA. Decrease in those metals concentration was accelerated with combined application of BA and compost. Urease and dehydrogenase activities significantly increased with increasing application rate of BA. Phosphotase activities were not affected with single application of BA but increased with combined application of BA and compost. Radish yield was not affected by application rate of BA. CONCLUSION: From the above results, combined application of BA and compost could be used as soil amendment to improve chemical properties and enzyme activities of soil without increase in heavy metal concentration and decrease in crop yield in upland soil.

본 연구는 바닥재의 농업적 활용성을 증대시키기 위해 바닥재의 안정화 제재로써 축분퇴비를 선발하였고 알타리무의 재배토양에서 바닥재와 축분퇴비의 혼합 시용량에 따른 토양의 화학적 특성, 토양 내 중금속의 함량, 효소활성의 변화 및 알타리무의 수량을 조사하기 위해 실시되었다. 바닥재를 단독으로 시용하였을 때 보다 바닥재와 축분퇴비를 혼합 시용하였을 때 토양의 화학적 특성이 더욱 우수하게 개량되어지는 결과를 나타내었다. 바닥재의 시용량을 증가시킴에 따라 토양 내 수용성 망간과 아연의 함량이 유의적으로 감소하였으며 이러한 효과는 바닥재와 축분퇴비를 혼합 시용하였을 때 더욱 증가하는 것으로 나타났다. 바닥재의 시용량 증가는 알타리무 수확 후 토양 내 urease의 활성을 유의적으로 증가시켰다. 바닥재의 단독시용에 비해 바닥재와 축분퇴비의 혼합시용은 urease, dehydrogenase, acidic phosphotase 및 alkaline phosphotase의 활성을 더욱 증가시키는 것으로 나타났다. 바닥재와 축분퇴비의 혼합시용은 알타리무의 수량 감소를 초래하지 않았으며 통계적으로 유의한 차이는 없었지만 수량의 증수를 보였다. 결론적으로 바닥재는 축분퇴비와 혼합하여 사용된다면 밭토양 내 중금속 함량의 증대와 작물수량의 감소 없이 토양의 화학적 특성과 효소활성을 개량할 수 있는 것으로 조사되었다.

Keywords

References

  1. Adriano, D.C., Woodford, T.A., Ciravolo, T.G., 1978. Growth and elemental composition of corn and bean seedlings as influenced by soil application of coal ash. J. Environ. Qual. 7, 416-421.
  2. Adriano, D.C., Page, A.L., Elseewi, A.A., Chang, A.C., Straughan, I., 1980. Utilization and disposal of fly ash and other coal residues in terrestrial ecosystem, J. Environ. Qual. 9, 333-334.
  3. Adriano, D.C., 2001. Trace elements in terrestrial environments; biogeochemistry, bioavailability and risks of metals, p. 866, 2nd ed. Springer, New York, USA.
  4. Allison, L.E., 1965. Organic carbon, in: Black, C.A, (Eds), Methods of soil analysis, Am Soc Agron Inc. Publ, Madison, WI, USA, pp. 1367-1376.
  5. Blonska, E., 2010. Enzyme Activity in Forest Peat Soils. Folia Forestalia Polonica 52, 20-25.
  6. Bolan, N.S., Adriano, D.C., Duraisamy, P., Mani, A., 2003. Immobilization and phytoavailability of cadmium in variable charge soils. III. Effect of biosolid compost addition, Plant Soil 256, 231-241. https://doi.org/10.1023/A:1026288021059
  7. Bremner, J.M., 1965. Total nitrogen. In Methods of Soil Analysis, Black, C.A.(Eds), Am. Soc. Agron. Inc. Publ., Madison, WI, USA, pp. 1149-1178.
  8. Druzina, V.D., Miroshrachenko, E.D., Chertov, O.D., 1983. Effect of industrial pollution on nitrogen and ash content in meadow phytocoenotic plants, Bot. Zh. 68, 1583-1591.
  9. Eivazi, F., Tabatabai, M.A., 1977. Phosphatases in soils, Soil Biology and Biochemistry 9, 167-172. https://doi.org/10.1016/0038-0717(77)90070-0
  10. Elseewi, A.A., Grimm, S.R., Page, A.L., Straughan, I.R., 1981. Boron enrichment of plants and soils treated with coal ash, J. Plant Nutr. 3, 409-427. https://doi.org/10.1080/01904168109362848
  11. Garcia, C., Hernandez, T., Costa, C., Ceccanti, B., Masciandaro, G., Ciardi, C., 1992. A study of biochemical parameters of composted and fresh municipal wastes, Biores. Technol. 44, 17.
  12. Huang, T.C., Chen, D.H., 1992. Variations of ammonium ion concentration and solution pH during the hydrolysis of urea by urease, J. Chem. Technol. Biotechnol. 55, 45.
  13. Krebs, R., Gupta, S.K., Furrer, G., Schulin, R., 1998. Solubility and plant uptake of metals with and without liming of sludgeamended soils, J. Environ. Qual. 27, 18-23.
  14. Kim B.j., Back J.h., Kim Y.S., 1997. Eeffect of fly ash on the yield chinese and chemical properties of soil. Korean Society of Soil Science and Fertilizer 30, 161-167.
  15. Kim. H.S., Kim J.K., Park S.W., Lee H.D., Kim S.C., 2013, Lithium content monitoring of coal-fired power plants by coal ash, Korea society of waste management 1, 181.
  16. Klammer, M.R.S., Knapp, B., Aichberger, K., Insam, H., 2006. Long-term effects of compost amendment of soil on functional and structural diversity and microbial activity, Soil Use and Management 22, 209-218. https://doi.org/10.1111/j.1475-2743.2006.00027.x
  17. Lai, K.M., Ye, D.Y., Wong, J.W.C., 1999. Enzyme Activities in a Sandy Soil Amended with Sewage Sludge and Coal Fly Ash, Water, Air, and Soil Pollution 113, 261-272. https://doi.org/10.1023/A:1005025605302
  18. Lo, H.M., Lin, K.C., Liu, M.H., Pai, T.Z., Lin, C.Y., Liu, W.F., Fang, G.C., Lu, C., Chiang, C.F., Wang, S.C., Chen, P.H., Chen, J.K., Chiu, H.Y., Wu, K.C., 2009. Solubility of heavy metals added to MSW, Journal of Hazardous Materials 161 294-299. https://doi.org/10.1016/j.jhazmat.2008.03.119
  19. Merrington, G., Madden, C., 2000. Changes in cadmium and zinc phytoavailability in agricultural soil after amendment with papermill sludge and biosolid, Commun. Soil Sci. Plant. Anal 31, 759-776. https://doi.org/10.1080/00103620009370475
  20. Mersi, W., Schinner, F., 1991. An improved and accurate method for determining the dehydrogenase activity of soils with iodonitrotetrazolium chloride, Biol. Fertil. Soils 11, 216-220. https://doi.org/10.1007/BF00335770
  21. Mittra, B.N., Karmakarb, S., Swainc, D.K., Ghosha, B.C., 2005. Fly ash-a potential source of soil amendment and a component of integrated plant nutrient supply system, Fuel 84, 1447-1451. https://doi.org/10.1016/j.fuel.2004.10.019
  22. Moeskops, B., Buchan, D., Sleutel, S., Herawaty, L., Husen, E., Saraswati, R., Setyorini, D., De Neve, S., 2010. Soil Microbial Communities and Activities Under Intensive Organic and Conventional Vegetable Farming In West Java Indonesia, Applied Soil Ecology 45, 112-120. https://doi.org/10.1016/j.apsoil.2010.03.005
  23. Moliner, A.M., Street, J.J., 1982. Effect of fly ash and lime on growth and composition of corn (Zea mays L.) on acid sandy soils, Soil Crop Sci. Soc. Fla. Proc. 41, 217-220.
  24. Murphy, J., Riley, J.P., 1962. A modified single solution method for determination of phosphate in natural waters, Anal. Chim. Acta. 27, 31-36. https://doi.org/10.1016/S0003-2670(00)88444-5
  25. Nair, A., Ngouajio, M., 2012. Soil microbial biomass, functional microbial diversity, and nematode community structure as affected by cover crops and compost in an organic vegetable production system, Applied Soil Ecology 58, 45-55. https://doi.org/10.1016/j.apsoil.2012.03.008
  26. Nayak, D.R., Babu, Y.J., Adhya, T.K., 2007. Long-term application of compost influences microbial biomass and enzyme activities in a tropical Aeric Endoaquept planted to rice under flooded condition, Soil Biology Biochemistry 39, 1897-1906. https://doi.org/10.1016/j.soilbio.2007.02.003
  27. Nelson, D.W., Sommers, L.E., 1996. Total carbon, organic carbon, and organic matter. In Methods of Soil Analysis, Sparks, D.L., (Eds), Chapter 34 Total Carbon, Orgnic Carbon, and Organic Matter Madison, WI. USA, pp. 961-1010.
  28. Nybroe, O., Jorgensen, P.E., Henze, M., 1992. Enzyme activities in waste water and activated sludge, Water Res. 26, 579. https://doi.org/10.1016/0043-1354(92)90230-2
  29. Page, A.L., Elseewi, A.A., Straughan, I.R., 1979. Physical and chemical properties of fly ash from coal-fired power plants with reference to environmental impacts, Residue Rev. 71, 83-120.
  30. Park, S., Hausinger, R.P., 1995. Requirement of carbon dioxide for in vitro assembly of the urease nickel metallocenter, Science 267, 1156. https://doi.org/10.1126/science.7855593
  31. Patra, K.C., Rautray, T.R., Nayak, P., 2012. Analysis of grains grown on fly ash treated soils, Applied Radiation and Isotopes 70, 1797-1802 https://doi.org/10.1016/j.apradiso.2012.03.037
  32. Pierzynski, G.M., Schwab, A.P., 1993. Bioavailability of zinc, cadmium and lead in a metal contaminated alluvial soil, J. Environ. Qual. 22, 247-254.
  33. Sardans, J., Penuelas, J., 2005. Drought decreases soil enzyme activity in a Mediterranean Quercus ilex L. forest, Soil Biol. Biochem. 37, 455-461. https://doi.org/10.1016/j.soilbio.2004.08.004
  34. Wadman, W.P., Sluijsmans, C.M.J., de la Lande Cremer, L.C.N., 1987. Value of animal manures: changes in perception. in: van der Meer, H.G. (Eds), Animal Manure on Grassland and Fodder Crops. Fertilizer or Waste? Martinus Nijhoff Pub., Dordrecht, the Netherlands, pp. 1-16.
  35. Wang, Z.G., Guo, Y., Li, L.Y., 1990. A study of phosphatase activity in anaerobic sludge digestion, Water Res. 24, 917. https://doi.org/10.1016/0043-1354(90)90143-T
  36. Wong, M.H., Wong, J.W.C., 1989. Germination and seedling growth of vegetable crops in fly ash amended soils, Agr. Ecosyst. Environ. 26, 23-35. https://doi.org/10.1016/0167-8809(89)90035-2

Cited by

  1. The Effect of Bottom ash in Reducing Cadmium Phytoavailability in Cadmium-contaminated Soil vol.35, pp.2, 2016, https://doi.org/10.5338/KJEA.2016.35.2.19