DOI QR코드

DOI QR Code

Alveolar ridge preservation of an extraction socket using autogenous tooth bone graft material for implant site development: prospective case series

  • Kim, Young-Kyun (Department of Oral and Maxillofacial Surgery, Section of Dentistry, Seoul National University Bundang Hospital) ;
  • Yun, Pil-Young (Department of Oral and Maxillofacial Surgery, Section of Dentistry, Seoul National University Bundang Hospital) ;
  • Um, In-Woong (R&D Department, Korea Tooth Bank) ;
  • Lee, Hyo-Jung (Department of Periodontology, Section of Dentistry, Seoul National University Bundang Hospital) ;
  • Yi, Yang-Jin (Department of Prosthodontics, Section of Dentistry, Seoul National University Bundang Hospital) ;
  • Bae, Ji-Hyun (Department of Conservative Dentistry, Section of Dentistry, Seoul National University Bundang Hospital) ;
  • Lee, Junho (Department of Periodontology, School of Dentistry, Seoul National University)
  • Received : 2014.02.12
  • Accepted : 2014.08.25
  • Published : 2014.12.31

Abstract

This case series evaluated the clinical efficacy of autogenous tooth bone graft material (AutoBT) in alveolar ridge preservation of an extraction socket. Thirteen patients who received extraction socket graft using AutoBT followed by delayed implant placements from Nov. 2008 to Aug. 2010 were evaluated. A total of fifteen implants were placed. The primary and secondary stability of the placed implants were an average of 58 ISQ and 77.9 ISQ, respectively. The average amount of crestal bone loss around the implant was 0.05 mm during an average of 22.5 months (from 12 to 34 months) of functional loading. Newly formed tissues were evident from the 3-month specimen. Within the limitations of this case, autogenous tooth bone graft material can be a favorable bone substitute for extraction socket graft due to its good bone remodeling and osteoconductivity.

Keywords

References

  1. Araujo MG, Lindhe J. Dimensional ridge alterations following tooth extraction. An experimental study in the dog. J Clin Periodontol 2005;32:212-8. https://doi.org/10.1111/j.1600-051X.2005.00642.x
  2. Lekovic V, Kenney EB, Weinlaender M, Han T, Klokkevold P, Nedic M, Orsini M. A bone regenerative approach to alveolar ridge maintenance following tooth extraction. Report of 10 cases. J Periodontol 1997;68:563-70. https://doi.org/10.1902/jop.1997.68.6.563
  3. Camargo PM, Lekovic V, Weinlaender M, Klokkevold PR, Kenney EB, Dimitrijevic B, Nedic M, Jancovic S, Orsini M. Influence of bioactive glass on changes in alveolar process dimensions after exodontia. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2000;90:581-6. https://doi.org/10.1067/moe.2000.110035
  4. Gross J. Ridge preservation using HTR synthetic bone following tooth extraction. Gen Dent 1995;43:364-7.
  5. Hammerle CH, Chiantella GC, Karring T, Lang NP. The effect of a deproteinized bovine bone mineral on bone regeneration around titanium dental implants. Clin Oral Implants Res 1998;9:151-62. https://doi.org/10.1034/j.1600-0501.1998.090302.x
  6. Iasella JM, Greenwell H, Miller RL, Hill M, Drisko C, Bohra AA, Scheetz JP. Ridge preservation with freeze-dried bone allograft and a collagen membrane compared to extraction alone for implant site development: a clinical and histologic study in humans. J Periodontol 2003;74:990-9. https://doi.org/10.1902/jop.2003.74.7.990
  7. Lekovic V, Camargo PM, Klokkevold PR, Weinlaender M, Kenney EB, Dimitrijevic B, Nedic M. Preservation of alveolar bone in extraction sockets using bioabsorbable membranes. J Periodontol 1998;69:1044-9. https://doi.org/10.1902/jop.1998.69.9.1044
  8. Jeong KI, Kim SG, Kim YK, Oh JS, Jeong MA, Park JJ. Clinical study of graft materials using autogenous teeth in maxillary sinus augmentation. Implant Dent 2011;20:471-5. https://doi.org/10.1097/ID.0b013e3182386d74
  9. Jeong KI, Kim SG, Oh JS, Lim SC. Maxillary sinus augmentation using autogenous teeth: preliminary report. J Korean Assoc Maxillofac Plast Reconstr Surg 2011;33:256-263.
  10. Kim YK, Lee HJ, Kim KW, Kim SG, Um IW. Guide bone regeneration using autogenous teeth: case reports. J Korean Assoc Oral Maxillofac Surg 2011;37:142-7. https://doi.org/10.5125/jkaoms.2011.37.2.142
  11. Darby I, Chen S, De Poi R. Ridge preservation: what is it and when should it be considered. Aust Dent J 2008;53:11-21. https://doi.org/10.1111/j.1834-7819.2007.00008.x
  12. Luczyszyn SM, Papalexiou V, Novaes AB Jr, Grisi MF, Souza SL, Taba M Jr. Acellular dermal matrix and hydroxyapatite in prevention of ridge deformities after tooth extraction. Implant Dent 2005;14:176-84. https://doi.org/10.1097/01.id.0000165082.77499.41
  13. Shi B, Zhou Y, Wang YN, Cheng XR. Alveolar ridge preservation prior to implant placement with surgical-grade calcium sulfate and platelet-rich plasma: a pilot study in a canine model. Int J Oral Maxillofac Implants 2007;22:656-65.
  14. Wang HL, Tsao YP. Histologic evaluation of socket augmentation with mineralized human allograft. Int J Periodontics Restorative Dent 2008;28:231-7.
  15. Artzi Z, Nemcovsky CE. The application of deproteinized bovine bone mineral for ridge preservation prior to implantation. Clinical and histological observations in a case report. J Periodontol 1998;69:1062-7. https://doi.org/10.1902/jop.1998.69.9.1062
  16. Ten Heggeler JM, Slot DE, Van der Weijden GA. Effect of socket preservation therapies following tooth extraction in non-molar regions in humans: a systematic review. Clin Oral Implants Res 2011;22:779-88. https://doi.org/10.1111/j.1600-0501.2010.02064.x
  17. Kim YK, Yun PY, Lee HJ, Ahn JY, Kim SG. Ridge preservation of the molar extraction socket using collagen sponge and xenogeneic bone grafts. Implant Dent 2011;20:267-72. https://doi.org/10.1097/ID.0b013e3182166afc
  18. Lee HJ, Kim MJ, Kim YK, Yun PY. Extraction socket preservation using ${\beta}$-TCP coated with recombinant human BMP (rhBMP-2): randomized clinical prospective study. Oral Biol Res 2011;35:110-5.
  19. Jeong HR, Hwang JH, Lee JK. Effectiveness of autogenous tooth bone used as a graft material for regeneration of bone in miniature pig. J Korean Assoc Oral Maxillofac Surg 2011;37:375-9. https://doi.org/10.5125/jkaoms.2011.37.5.375
  20. Kim JY, Kim KW, Um IW, Kim YK, Lee JK. Bone healing capacity of demineralized dentin matrix materials in a minipig cranium defect. J Korean Dent Sci 2012;5:21-8. https://doi.org/10.5856/JKDS.2012.5.1.21
  21. Kim YK, Kim SG, Byeon JH, Lee HJ, Um IU, Lim SC, Kim SY. Development of a novel bone grafting material using autogenous teeth. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010;109:496-503. https://doi.org/10.1016/j.tripleo.2009.10.017
  22. Kim YK, Kim SG, Oh JS, Jin SC, Son JS, Kim SY, Lim SY. Analysis of the inorganic component of autogenous tooth bone graft material. J Nanosci Nanotech 2011;11:7442-5. https://doi.org/10.1166/jnn.2011.4857
  23. Murata M, Akazawa T, Hino J, Tazaki J, Ito K, Arisue M. Biochemical and histo-morphometrical analyses of bone and cartilage induced by human decalcified dentin matrix and BMP-2. Oral Biol Res 2011;35:9-14.
  24. Murata M, Sato D, Hino J, Akazawa T, Tazaki J, Ito K, Arisue M. Acid-insoluble human dentin as carrier material for recombinant human BMP-2. J Biomed Mater Res A 2012;100:571-7.
  25. Kim GW, Yeo IS, Kim SG, Um IW, Kim YK. Analysis of crystalline structure of autogenous tooth bone graft material: X-Ray diffraction analysis. J Korean Assoc Oral Maxillofac Surg 2011;37:225-8. https://doi.org/10.5125/jkaoms.2011.37.3.225

Cited by

  1.  : une technique alternative à la décortication pp.2105-1011, 2015, https://doi.org/10.1051/mbcb/2015039
  2. Alveolar Ridge Preservation of an Extraction Socket of Fractured Maxillary Lateral Incisor vol.05, pp.01, 2016, https://doi.org/10.4236/crcm.2016.51004
  3. characterization of MG-63 osteoblast-like cells cultured on organic-inorganic lyophilized gelatin sponges for early bone healing vol.104, pp.8, 2016, https://doi.org/10.1002/jbm.a.35733
  4. Autogenous demineralized dentin matrix from extracted tooth for the augmentation of alveolar bone defect: a prospective randomized clinical trial in comparison with anorganic bovine bone vol.28, pp.7, 2016, https://doi.org/10.1111/clr.12885
  5. Evaluation of the Healing Potential of Demineralized Dentin Matrix Fixed with Recombinant Human Bone Morphogenetic Protein-2 in Bone Grafts vol.10, pp.9, 2017, https://doi.org/10.3390/ma10091049
  6. Osteogenic Potential of Demineralized Dentin Matrix as Bone Graft Material vol.26, pp.2, 2017, https://doi.org/10.2485/jhtb.26.223
  7. Characterization and antimicrobial efficacy of Portland cement impregnated with silver nanoparticles vol.9, pp.3, 2017, https://doi.org/10.4047/jap.2017.9.3.217
  8. Clinical Efficacy of Tooth-Bone Graft pp.1056-6163, 2017, https://doi.org/10.1097/ID.0000000000000687
  9. Long-term follow-up of autogenous tooth bone graft blocks with dental implants vol.5, pp.2, 2017, https://doi.org/10.1002/ccr3.754
  10. Volumetric, Radiographic, and Histologic Analyses of Demineralized Dentin Matrix Combined with Recombinant Human Bone Morphogenetic Protein-2 for Ridge Preservation: A Prospective Randomized Controlled Trial in Comparison with Xenograft vol.8, pp.8, 2018, https://doi.org/10.3390/app8081288
  11. Histological Evaluation of the Healing Process of Various Bone Graft Materials after Engraftment into the Human Body vol.11, pp.5, 2018, https://doi.org/10.3390/ma11050714
  12. Efficacy of autogenous teeth for the reconstruction of alveolar ridge deficiencies: a systematic review vol.23, pp.12, 2014, https://doi.org/10.1007/s00784-019-02869-1
  13. Sinus bone graft and simultaneous vertical ridge augmentation: case series study vol.41, pp.None, 2014, https://doi.org/10.1186/s40902-019-0221-5
  14. Socket preservation using demineralized tooth graft: A case series report with histological analysis vol.3, pp.1, 2014, https://doi.org/10.4103/gfsc.gfsc_16_19
  15. Combining autologous particulate dentin, L-PRF, and fibrinogen to create a matrix for predictable ridge preservation: a pilot clinical study vol.24, pp.3, 2020, https://doi.org/10.1007/s00784-019-02922-z
  16. Fabrication of Three-Dimensional Composite Scaffold for Simultaneous Alveolar Bone Regeneration in Dental Implant Installation vol.21, pp.5, 2014, https://doi.org/10.3390/ijms21051863
  17. Retrospective Study: Lateral Ridge Augmentation Using Autogenous Dentin: Tooth-Shell Technique vs. Bone-Shell Technique vol.18, pp.6, 2014, https://doi.org/10.3390/ijerph18063174
  18. Application of Bovine Acellular Cancellous Bone Matrix in Alveolar Ridge Preservation Following Tooth Extraction vol.11, pp.5, 2014, https://doi.org/10.1166/jbt.2021.2602
  19. Retrospective Study on Tooth Shell Technique Using Endodontically Treated Teeth in Lateral Ridge Augmentation vol.11, pp.13, 2014, https://doi.org/10.3390/app11135882