Korean J. Environ. Biol. 32(4): 335~343 (2014)

http://dx.doi.org/10.11626/KJEB.2014.32.4.335

2010년 국내 남해 해역에 출현한 Pseudo-nitzschia cf. brasiliana의 형태 특성

허영백·박종규^{1,*}

국립수산과학원 남동해수산연구소, ¹국립국산대학교 해양생물공학과

The Morphological Characteristics of *Pseudo-nitzschia* cf. *brasiliana* Observed in Korea Strait, 2010

Young Baek Hur and Jong-Gyu Park^{1,*}

National Fisheries Research & Development Institute / Southeast Sea Fisheries Research Institute, Tongyeong 650-943, Korea ¹Department of Marine Biotechnology, Kunsan National University, Gunsan 573-701, Korea

Abstract - Several species of the genus *Pseudo-nitzschia* produce the neurotoxin domoic acid (DA) known to be responsible for amnesic shellfish poisoning. Recently off the coast of Geomundo and in Exclusive Economic Zone (EEZ) of Korea Strait, *P.* cf. *brasiliana* predominated in summer, 2010. As *P.* cf. *brasiliana* was new to Korea, we describe the morphological characteristics of the species. It was observed that cells were linear to lanceolate in valve and girdle view, $51 \sim 76 \,\mu\text{m}$ long and $1.9 \sim 2.6 \,\mu\text{m}$ wide. In the central part a large interspace was absent. The number of fibulae and striae in 10 μm were $30 \sim 37$ and $31 \sim 37$. Each stria contained $2 \sim 3$ rows of poroids, with 10 to 14 poroids in 1 μm length. These morphological features of *P*. cf. *brasiliana* were found to be similar with the *P. brasiliana*, except with the fact that *P. cf. brasiliana* carred more numbers of fibulae/striae in 10 μm and poroids in 1 μm . Based on our observation, we suggest that *P. cf. brasiliana*.

Key words : Pseudo-nitzschia cf. brasiliana, Phytoplankton, diatoms, Korea Strait, SEM

서 론

최근 국내 연안 해역에서는 빈번한 유해 적조 출현으 로 많은 피해를 입고 있다. 그 피해의 대부분이 와편모 조류에 의한 것이지만, 봄이나 초여름에 국내 연안 해역 에서 자주 적조를 일으키는 잠재독성 돌말류 *Pseudo-nitzschia*에 대해서도 지속적인 관심을 기울여야 한다. 이 속은 아미노산의 일종인 신경독 domoic acid (DA)를 생산 하여 (Bates *et al.* 1989) 인간이나 해양 포유류에 기억상실 성 패독증을 일으키는 것으로 알려져 있으며 (Wright *et al.* 1989; Todd 1990; Lundholm *et al.* 2003), 현재 10여 종 이상의 *Pseudo-nitzschia*가 DA를 생산하는 것으로 밝혀 졌다 (Skov *et al.* 1999; Frixell and Hasle 2003). Hasle (2002) 은 이런 독성종들이 특정 해역에 국한되지 않고 전 세계 에 폭넓게 분포하는 것으로 보고하였다. 국내에서는 아직 많은 연구가 수행되지 않았다. 진해-마산만과 통역 해역 에서 출현종에 대한 연구가 수행되었지만 (Lee and Baik

^{*} Corresponding author: Jong-Gyu Park, Tel. 063-469-4608,

Fax. 063-469-4990, E-mail. rtjgpark@kunsan.ac.kr

1995; Park *et al.* 1999, 2009; Kim 2010), 출현종의 독성 여 부나 외양역을 포함한 폭 넓은 해역에 대한 연구는 아직 미진하다. *Pseudo-nitzschia*가 잠재 독성종이라는 특성을 감안하면 이들의 외양역 분포 현황, 연안역 유입 가능성 이나 독성 여부에 대한 정확한 진단이 필요하다.

Pseudo-nitzschia는 돌말류 중에는 드물게 독 생산 능력 을 가지고 있어서 오래 전부터 많은 연구자의 관심을 받 았다. 최근 10여 년 사이에는 SEM, TEM과 같은 전자현 미경을 이용한 미세구조 연구와 유전자 염기서열 분석을 통한 계통분류 연구를 통해 약 20여종에 이르는 많은 신 종들이 보고되었다(Lundholm and Moestrup 2002; Priisholm et al. 2002; Lundholm et al. 2002, 2003, 2006, 2012; Amato and Montresor 2008; Quijano-Scheggia et al. 2009; Lim et al. 2012, 2013; Orive et al. 2013). 지금까지 학계에 는 변종을 제외하고 약 44종에 보고되었는데, 국내에는 약 15종 정도가 출현하는 것으로 알려져 있다(Park et al. 2009). 하지만 Pseudo-nitzschia 속에는 광학현미경이나 심 지어 전자현미경으로도 분류할 수 없는 은닉종(criptic species)이 많이 있어 (Lindholm et al. 2002, 2003; Quijano-Scheggia et al. 2009; Wang et al. 2012), 상대적으로 미진한 국내 연구 활동을 고려하면 실제 국내 해역에는 이보다 훨씬 많은 종이 분포하고 있을 것으로 판단되고 신종도 많이 있을 것으로 추정된다.

Pseudo-nitzschia는 세포 형태가 침처럼 뾰족한 식물플 랑크톤이다. 이들의 종 분류기준은 개각(valve)의 형태와 폭, 폭의 양끝, 등줄안다리 (fibulae)와 점무늬열 (striae)의 밀도, 개각 중간 공간 (centeral interspace)의 존재 여부, 환 각면(girdle)의 모습과 개각(valve)의 양끝, 군체가 겹치는 끝부분의 길이, 미소공(poroid) 등이다(Tomas 1996). 전통 적으로 폭 4µm을 기준으로 이보다 넓으면 'Seriata 그룹', 이보다 좁으면 'Delicatissima 그룹'으로 나누었다. 폭이 좁은 Delicatissima 그룹은 개각의 형태와 미소공(poroid)의 구조에 따라 다시 delicatissima 소그룹, micropora 소그룹, americana 소그룹, pseudodelicatissima 소그룹의 4 개 소그룹으로 나뉜다 (Park et al. 2009). micropora 소그룹 은 세포 중간이 넓고 끝 부분이 새 부리처럼 길고 뾰족하 지만, americana 소그룹은 세포 폭에 변화가 거의 없고 끝 부분이 뭉툭한 것이 특징이다. delicatissima 소그룹은 점무늬열에 2줄의 미소공이 있는 반면, pseudodelicatissima 소그룹은 점무늬열에 1줄의 미소공이 있으며 여러 개의 sector로 미소공이 나뉘어져 있는 것이 특징이다 (Table 3).

본 연구에서는 2010년 7월에 남해 EEZ 골재채취단지 와 거문도 해역에서 채집한 시료에서 지금까지 알려지지 않았던 Pseudo-nitzschia를 발견하여 보고하고자 한다. 기 존 americana 그룹의 P. brasiliana와 유사한 점이 많아서 임의로 P. cf. brasiliana로 이름 지었지만 미세구조에는 큰 차이가 있다. P. cf. brasiliana는 해당 해역에서 정량적 으로도 우점하는 것으로 나타났다. 이들의 잠재독성 특성 을 감안하여 서식 환경과 현존량도 아울러 제시한다.

재료 및 방법

1. 조사 시기와 정점

2010년 7월 20일 거문도 섬 주변 9개 정점과 2010년 7월 22일 남해 욕지도로부터 남쪽으로 50km 떨어진 남 해 EEZ 골재채취단지 10개 정점에서 시료를 채집하였다 (Fig. 1, Table 1). 거문도 해역에서는 표층과 엽록소 최대 층, EEZ 해역에서는 표층, 중층, 저층 3개 수층에서 해수 를 채집하였다.

2. 이화학적 환경

남해 EEZ 골재채취단지 주변 해역의 이화학적 환경은 같은 선박으로 조사를 수행한 한국수자원공사(Korea Water Resources Corporation 2010)의 자료를 인용하였다.

3. 식물플랑크톤 채집

EEZ 해역에서는 표층, 중층, 저층 3개 수층, 거문도 섬 주변에서는 표층과 엽록소 최대층에서 니스킨 채수기 (Niskin sampler)로 해수를 채집하여 HDPE(High density polyethylene) 시료병에 옮겨 담았다. 채집 시료는 현장에 서 즉시 최종농도 1% (10 mL L⁻¹)가 되도록 루골 용액

Fig. 1. A map showing sampling stations.

EE	Z in Korea Strait (22-Jul-20)	10)		Geomundo (20-Jul-2010)	
Stations	Longitude	Latitude	Stations	Longitude	Latitude
EEZ 1	128° 19′00″E	34° 10′00″N	St. 1	127° 16′41″E	34° 01′46″N
EEZ 2	128° 20'22''E	34° 10′30″N	St. 2	127° 17′27″E	34° 00′ 48″ N
EEZ 3	128° 20'37''E	34° 10′30″N	St. 3	127° 19′10″E	34° 00'49''N
EEZ 4	128° 22′22′′E	34° 10′30″N	St. 4	127° 19′ 10″ E	34° 01′ 05″ N
EEZ 5	128° 22′37″E	34° 10′30″N	St. 5	127° 19′50″E	34° 02′ 51″ N
EEZ 6	128° 20'30''E	34° 11′30″N	St. 6	127° 18′48″E	34° 03′ 47″ N
EEZ 7	128° 22′00′′E	34° 11′30″N	St. 7	127° 18′48″E	34° 02′23″N
EEZ 8	128° 24'30''E	34° 11′30″N	St. 8	127° 17′02″E	34° 03′ 58″ N
EEZ 9	128° 27′00′′E	34° 13′00″N	St. 9	127° 17′49″E	34° 03′ 15″ N
EEZ 10	128° 27′56″E	34° 25′ 37″ N			

Table 1. Location of sampling stations

(Lugol's Solution)으로 고정하였으며, 직사광선에 노출되 어 루골 용액이 광산화되는 것을 방지하기 위하여 알루 미늄 호일로 차광한 뒤 실험실로 운반하였다. 정성 분석 을 위해 20 μm 망목 net로 수직 예인하여 농축 시료를 수집한 후 현장에서 즉시 포르말린(Formaldehyde)으로 최종농도 1% (10 mL L⁻¹)가 되도록 고정하였고, 각각 100 mL HDPE 시료병에 넣어 운반하였다.

4. 식물플랑크톤 농축

실험실로 운반한 현장시료를 평평한 곳에 최소 48시간 이상 정치하여 시료병 안의 식물플랑크톤을 충분히 바닥 에 가라앉혔다. 식물플랑크톤이 모두 가라앉으면 직경 5 mm 이하의 사이펀으로 상등액을 제거하여 최종적으로 약 100 mL 정도만 남도록 농축하였으며, 농축 시료는 20 mL HDPE 시료병 3개에 각각 나누어 광학현미경용, 전자 현미경용, 대비용으로 보관하였다.

5. 현존량 및 형태 분석

각 해역에 출현하는 *Pseudo-nitzschia* 속의 존재 여부와 형태 특성을 관찰하기 위하여 Zeiss (Axio imager A₂, GER) 현미경으로 고정시료를 관찰하였다. 주사전자현미경(FE-SEM; Field Emission Scanning Electron Microscope, HITA-CHI, Japan) 관찰을 위한 시료는 루골 용액과 포르말린으 로 고정한 시료를 모두 사용하였으며, Simonsen (1974)의 규조 세척 방법을 따라 전처리하였다. 관찰에 사용할 시 료 분취량은 *Pseudo-nitzschia*의 출현량에 따라 1~10 mL 내에서 적절히 조절하였다. 분취 시료에 동량의 과망간산 칼륨(KMnO₄)을 첨가하여 24시간 동안 진탕한 후 시료의 2배만큼 염산(HCl)을 첨가하고 황녹색이 될 때까지 가 열하였다. 황녹색 시료가 완전히 식은 후 PC membrane filter (5 µm pore size, Millipore, USA)를 사용하여 15 mL 진공여과장치에서 여과하였다. 여과가 끝날 무렵, 시료와 여과지에 남아 있는 산과 염분을 제거하기 위해 증류수 로 3회에 걸쳐 세척하였다. 증류수 세척이 끝난 시료는 100% ethanol로 재차 세척하였고, 최종적으로 Petri dish에 넣어 밀봉 보관하였다. 밀봉 시료는 주사전자현미경(FE-SEM)으로 관찰하기 직전에 개봉하여 공기 건조하였으 며, 시료에 전도성을 주기 위해 Ion Sputter (HITACHI E-1045, Japan)로 10 mA 하에서 80초 동안 백금(Pt) 코팅하 였다. 시료 관찰은 가속 전압 5~10 Kv에서 수행하였다.

결과 및 고찰

1. Pseudo-nitzschia cf. brasiliana의 형태 특성

남해 EEZ 골재채취단지와 거문도에서 발견한 Pseudonitzchia cf. brasiliana는 세포의 끝이 뭉툭하여 전형적인 americana group의 종이었다. 개각면의 외형은 세포 전 체에 걸쳐 직선형에 가깝고 말단 부위에 이르러 조금 좁 아졌다(Figs. 2, 3). 개각 내측의 가운뎨 부분에 중간 공 간(central interspace)은 없었다. 평균 길이는 남해 EEZ 시 료는 65.5 µm, 거문도 시료는 67.0 µm이었다. 10 µm 안에 있는 등줄안다리(fibulae)와 점무늬열(striae)의 개수는 EEZ 시료의 경우 각각 30~34개, 32~37개, 거문도 시료 의 경우 각각 31~37, 31~37개로 두 해역의 시료 모두 1:1의 비율을 보였다. 이와 같은 등줄안다리와 점무늬열 의 1:1 비율은 4µm보다 크기가 작은 Pseudo-nitzchia에 서는 P. brasiliana에서만 나타나는 특징이다(Table 2).

Pseudo-nitzschia를 분류할 때 세포 중간 부위에 중간 공간(central interspace)이 존재하는지 여부는 매우 중요 하다. 세포 폭이 4μm보다 작은 Delicatissima 그룹에서는 중간 공간이 있는 종이 많은데, 이들은 대부분 종 동정이

Fig. 2. Pseudo-nitzchia cf. brasiliana from EEZ of Korea Strait: (A) LM. Valve view of preserved cell. Scale bar=10 μm. (B) SEM. Acid cleaned valve showing fibulae and striae. Note that are valve margins straight and symmetrical. Scale bar=10 μm. (C) End part of the valve slightly tapering toward the tip. Scale bar=5 μm. (D) Central part of the cell. Central interspace could not be seen. Scale bar=5 μm. (E) Valve tip. Scale bar=1 μm. (F) Detail of central part showing one to one matches between fibulae and striae. Scale bar=1 μm.

Species	Valve shape	Length (µm)	Width (µm)	Fibulae in 10 µm	Striae in 10 μm	Poroids in 1 μm	Rows of poroids	Central interspace	References	
	Linear to lanceolate	51~74 (65.5)	2~2.6 (2.2)	30~34 (32.9)	32~37 (34.8)	11~14 (12.0)	2	-	Present study; EEZ	
P. cf. brasiliana	Linear to lanceolate	55~76 (67.0)	1.9~2.6 (2.2)	31~37 (34.2)	31~37 (33.6)	10~13 (11.6)	2~3	-	Present study; Geomundo	
	Linear to lanceolate	29~36	2.6~3.1	23~25	23~25	8~9	2	_	Park et al., 2009	
	Linear to lanceolate	34~39 (36.5)	2.3~3.3 (2.7)	22~27 (24.6)	23~28 (25.2)	7~10 (8.7)	2	_	Quijano-Scheggia et al. (2008)	
P. brasiliana	Linear to lanceolate	(34.0)	(3.0)	(23.3)	(24.2)	(7.6)	2	_	Quijano-Scheggia et al. (2009a)	
	Linear to lanceolate	$12 \sim 65$	1.8~3.0	$20 \sim 26$	$20 \sim 26$	$7 \sim 10$	2~3	_	Lundholm et al. (2002)	
	Linear to lanceolate	(31.5)	(2.5)	(23.5)	(22.5)	8~9	2~3	-	Wang et al. (2012)	
P. americana	Linear to lanceolate	12~42	2.5~4.0	18~24	26~31	8~10	2~3	_	Kaczmarska <i>et al.</i> (2005), Lundholm <i>et al.</i> (2002)	
P. linea	Linear	13~27	1.8~2.2	18~22	38~42	8~10	2(~3)	_	Lundholm et al. (2002)	
P. turgidula	Linear to rhomboid- lanceolate, expanded in the middle	30~80	2.5~3.5	13~18	23~28	7~9	2	+	Lundholm <i>et al.</i> (2002), Priisholm <i>et al.</i> (2002), Skov <i>et al.</i> (1999)	
P. turgiduloides	Parallel sides, broad and rounded ends	63~126	1.8~2.7	10~13		8~10	1~2	+	Skov et al. (1999)	

 Table 2. Morphometric data of Pseudo-nitzschia cf. brasiliana and P. brasiliana, compared with its sister taxa and other Pseudo-nitzschia species. Minimum to maximum values are given for the local strains and numbers in parentheses are average values

Fig. 3. Pseudo-nitzchia cf. brasiliana from Geomundo coastal waters: (A) SEM. Cell frustules showing fibulae, striae, and symmetrical valve margins. Scale bar=10 µm. (B & C) End and central parts of the valves. Scale bar=5 µm. (D) Apical end of cell. Scale bar=1 µm. (E) Central part of cell showing two rows of poroids irregularly spaced. Scale bar=1 µm. (F) LM. Valve view of preserved cell. Scale bar=10 µm. (G) Parts of the valve showing hymenate velum of the poroids. Scale bar=0.2 µm.

난해하다. 특히 'P. delicatissima 소그룹'과 'P. pseudodelicatissima 소그룹'에는 유전자 염기서열 차이가 뚜렷하여 계통분류학적으로는 다른 종인데 형태 차이가 거의 없어 서 배양을 통하여 종주 간 교배 즉 종의 생물학적 특성 을 확인해야 구별이 가능한 경우도 있다(Amato and Montresor 2008; Quijano-Scheggia *et al.* 2012). 반면 중간 공간 이 없는 종은 그 수가 많지 않고 종 구별도 상대적으로 간단하다. 'micropora 소그룹'의 *P. granii, P. micropora, P. subcurvata* 3종과 'americana 소그룹'의 *P. americana, P. brasiliana, P. linea* 3종 등 모두 6종이 Delicatissima 그룹 중에서 중간 공간이 없는 종이다(Table 3). *P. cf. brasiliana*는 세포 폭이 4µm를 넘지 않고 중간 공간도 없다. 이런 점에서 'P. delicatissima 소그룹'이나 'P. pseudodelicatissima 소그룹'과 확연하게 구분되며 상대적으 로 동정도 쉽다. 또한 micropora 소그룹은 세포 양 끝 부 분이 길쭉한 부리모양을 하고 있고 10 µm 내 점무늬열 수가 등줄안다리 수의 2배가 넘기 때문에 *P.* cf. brasiliana와 외형적으로 많은 차이가 있다. americana 소그룹 내에서 *P. americana*, *P. brasiliana*, *P. linea* 3종은 10 µm 내에 있는 등줄안다리 수와 점무늬열 수의 비율에서 서 로 뚜렷한 차이가 있다. *P. brasiliana*는 그 비율이 1:1이 고, *P. americana*와 *P. linea*는 각각 1:1.3, 1:2 내외이다. 그 비율이 1:1인 *P.* cf. brasiliana는 이런 점에서 *P. brasiliana*와 외형적으로 가깝다. Seriatia 그룹에서는 *P. australis*, *P. obtuse*, *P. pungens*, *P. multiseries*, *P. multstriata*, *P. seriata* 6중이 중간 공간이 있다. *P. multstriata*을 제외하면 이들

	Groups	Members
Seriata group		P. australis [*] , P. fraudulenta, P. heimii, P. obtuse [*] , P. pungens [*] , P. pungiformis, P. multiseries [*] , P. multstriata [*] , P. seriata [*] , P. sinica, P. subfraudulenta, P. subpacifica
	P. delicatissima complex	P. arenysensis, P. decipiencs, P. delicatissima, P. dolorosa, P. lineola
Delicatissima group	P. pseudodelicatissima complex	P. abrensis, P. batesiana, P. caciantha, P. calliantha, P. circumpora, P. cuspidata, P. fryxelliana, P. fukuyoi, P. hasleana, P. inflatula, P. lundholmiae, P. mannii, P. plurisecta, P. pseudodelicatissima
	micropora group	P. galaxiae, P. granii*, P. micropora*, P. prolongatoides, P. subcurvata*
	americana group	P. americana*, P. brasiliana*, P. linea*, P. turgidula, P. turgiduloides

Table 3. Each member of five *Pseudo-nitzschia* groups. 'Delicatissima Group' is subdivided into four small groups by the characteristics of value shape and poroid structures. The members that do not carry central interspace are marked with asterisk.

은 모두 등줄안다리 수와 점무늬열 수의 비율이 대체로 1:1 정도를 유지한다. 하지만 전체 형태가 가운데 부분 이 넓은 배 모양이고 세포의 폭이 4µm를 넘어서 *P*.cf. *brasiliana*와는 근본적인 차이가 있다.

P. cf. brasiliana가 P. brasiliana와 유사하지만 등줄안다 리와 점무늬열의 비율만 동일할 뿐 나머지 세부 구조는 많이 다르다. 전체적으로 세포의 길이가 국내 통영 연안 이나 홍콩, 중국 Daya만, 스페인 Catalan 해변에 출현한 P. brasiliana보다 2배 정도 길고, 10 µm 내 등줄안다리 수와 점무늬열의 수도 이들보다 1.5배 정도 많다(Table 2). 게다가 1 µm 안에 있는 미소공(poroid)의 수도 남해 EEZ와 거문도 주변 해역 시료에서 각각 평균 12.0개, 11.6개로 나타나 지역에 따라 평균 7.6~8.7개의 분포를 보이는 P. brasiliana보다 1.5배 정도 많다. 전반적으로 P. cf brasiliana는 등줄안다리, 점무늬열, 미소공 등의 미세 구조들이 P. brasiliana보다 더 밀집하게 분포하는 것을 알 수 있다. 'P. delicatissima 소그룹'과 'P. pseudodelicatissima 소그룹'에서는 전자현미경을 이용하여도 종 간 형태 차이를 구분해내기 어려운 경우가 있음(Amato and Montresor 2008; Quijano-Scheggia et al. 2012)을 감안 하면 이 정도 미세구조 차이는 두 종이 확연히 다른 종 이라는 것을 시사한다. 따라서 P. cf. brasiliana는 P. brasiliana의 변종이나 신종 수준으로 분류하는 것이 합당해 보인다. 다만 신종이나 변종으로 확정하기 위해서는 차후 본 종을 배양하여 유전자 염기서열 분석을 통한 계통분 류를 해야할 것이다. 또한 공중보건 측면에서 이들의 독 성 여부도 판단할 필요가 있다.

2. Pseudo-nitzschia cf. brasiliana 현존량과 이화학적 환경

2010년 7월 남해 EEZ 골재채취단지의 식물플랑크톤 현존량은 16~1,075 cells mL⁻¹로 변화하였고, 평균은 228 cells mL⁻¹이었다. 각 수심별 평균 현존량은 표층에서 30 cells mL⁻¹(16~80 cells mL⁻¹), 중층에서 332 cells mL⁻¹(54 ~1,075 cells mL⁻¹), 저층에서 323 cells mL⁻¹(36~871 cells mL⁻¹)이었다. 당시 *Pseudo-nitzschia* cf. *brasiliana*은 표, 중, 저층을 포함한 모든 수층에서 평균 185 cells mL⁻¹(2~ 994 cells mL⁻¹)로 출현하여 최고 우점종이었고, 평균 점유 율은 55.4%에 이르렀다(Fig. 4). 연구 지역이 비교적 외 양에 위치함을 고려하면 상당히 높은 현존량이라고 할 수 있다 수층별로는 표, 중, 저층에서 각각 8.6 cells mL⁻¹, 276.4 cells mL⁻¹, 270.3 cells mL⁻¹씩 출현하였고, 평균 점유 율은 각각 19.1%, 74.1%, 72.9%를 차지하였다. 현존량과 점유율 모두 중, 저층에서 압도적으로 높은 특징을 보였 다. 동 시기에 *Pseudo-nitzschia* 속의 다른 종인 *P. multistriata와 P. pungens*도 출현하였으나 현존량은 각각 0.2 cells mL⁻¹와 0.1 cells mL⁻¹에 불과하였다.

남해 EEZ 골재채취단지에서는 2005년 7월에도 Pseudonitzschia가 최고 우점종으로 출현한 적이 있다(부산신항 만주식회사(삼성물산주식회사) 2005). 그때 우점종이 P. delicatissima 이었는데, 당시에는 P. cf. brasiliana나 P. brasiliana가 국내에 많이 알려지지 않았던 시기이기 때 문에, P. cf. brasiliana를 형태적으로 유사한 P. delicatissima로 오동정했을 가능성이 있다. 지금도 전자현미경으 로 시료를 확인하지 않고 광학현미경으로만 동정했으면 delicatissima 소그룹으로 동정했을 것이다. 광학현미경으 로는 delicatissima 소그룹의 종들을 종 수준까지 동정하 는 것이 불가능하기 때문이다. 이러한 결과는 P. cf. brasiliana가 여름철에 남해 EEZ 해역의 주요 우점종일 가 능성을 시사한다. 아울러 이 종의 전 세계 지리분포를 조 사하여 온난화 지시종의 가능성도 타진해 볼 필요가 있 다. 남해 해역에서 여름철에 P. cf. brasiliana가 우점종으 로 출현하고 있음에도 불구하고 아직 국내에 보고되지 않았던 것은 온난화로 인해 비교적 최근에 고위도 해역

Fig. 4. Cell counts and relative abundances of Pseudo-nitzchia cf. brasiliana in EEZ of Korea Strait.

으로 서식 범위를 확장하고 있을지도 모르기 때문이다. P. cf. brasiliana가 남해에서 여름철에 주요 우점종으로 출현하였고 이 종과 계통분류학적으로 높은 유연관계가 있을 것으로 추정되는 P. brasiliana가 태국, 베트남, 인도 네시아, 말레이지아, 멕시코, 브라질 등과 같은 열대 해역 에 주로 분포하고 있어서 (Lundholm 2002), 이 종의 주 서식지는 열대 해역일 가능성이 높다.

P. cf. brasiliana는 같은 시기에 거문도 해역의 표층에 서도 주요 우점종으로 출현하였다(Fig. 5). 당시 표층에서 식물플랑크톤 현존량이 평균 270 cells mL⁻¹(161~420 cells mL⁻¹)이었는데, P. cf. brasiliana는 평균 현존량 30 cells mL⁻¹(16~44 cells mL⁻¹)로 Cylindrotheca closterium (166 cells mL⁻¹, 94~231 cells mL⁻¹) 다음으로 높은 현존량을 기록하였다. 평균 점유율도 표층에서 11.7% (5.7~15.9%) 에 이르러 동일 시기 EEZ 해역보다 조금 낮지만 10% 이 상의 비교적 높은 점유율을 보였다. EEZ 해역에서 P. cf. brasiliana의 현존량과 점유율이 표층에서 가장 낮고 중, 저층에서 크게 늘어났던 것을 생각하면, EEZ 해역과 지 리적으로 멀지 않은 거문도 해역에서도 수심이 깊어지

Fig. 5. Cell counts and relative abundances of *Pseudo-nitzchia* cf. *brasiliana* in Geomundo coastal waters.

1 40010 10													
Depth	T. (°C)	S (psu)	COD	NO ₂ -N	NO ₃ -N	T-N	NH ₃ -N	PO ₄ -P	T-P	SiO ₂ -Si	SS	pН	DO
Surface	26.2	31.72	1.535	0.0006	0.02	0.32	0.11	0.00	0.01	1.49	2.15	8.2	6.9
Middle	16.5	33.87	1.769	0.0014	0.02	0.29	0.11	0.00	0.01	1.51	1.61	8.2	7.4
Bottom	15.0	34.2	1.607	0.0027	0.07	0.32	0.09	0.00	0.01	1.62	1.70	8.2	7.3
Mean	19.2	33.26	1.637	0.0018	0.04	0.31	0.10	0.00	0.01	1.54	1.82	8.2	7.2

Table 4. Environmental parameters at each depth of EEZ in Korea Strait

면서 이들의 현존량과 점유율 모두 증가하였을 것으로 보인다.

P. cf. brasiliana가 선호하는 환경 조건을 추정하기 위 하여 이들이 전체 식물플랑크톤 현존량의 50%를 상회하 며 극우점하였던 2010년 7월 남해 EEZ 골재채취단지의 이화학적 환경 요인을 Table 4에 정리하였다. 여기에서 P. cf. brasiliana가 표층보다 중층과 저층에서 더 많이 분 포하였다고 하더라도 이들이 중,저층의 환경 조건을 표 층보다 더 선호하는 것으로 인식하는 것은 옳지 않을 수 있다. P. cf. brasiliana의 수직 분포에 이화학적 환경 요 인 외에도 식물플랑크톤 자체의 침전, 표층에서 동물플 랑크톤의 섭식, 해수의 수직 혼합 등 여러 다양한 물리 생물학적 요인들이 분포에 영향을 미치기 때문이다. 즉 P. cf. brasiliana의 수동적인 이동이나 변화로 인하여 현 존량이 많이 분포하는 수심의 환경 조건이 반드시 이들 이 선호하는 환경 조건을 반영하는 것은 아니다. 그럼에 도 생물 자체의 물리적 한계를 벗어나서 생명활동을 유 지할 수는 없기 때문에 Table 4에 나타난 여러 이화학적 환경 요인의 변화 범위는 P. cf. brasiliana가 선호하거나 보편적으로 서식하는 환경 조건에서 크게 벗어나지 않 을 것으로 판단한다.

적 요

규조류 Pseudo-nitzschia는 아미노산의 일종 신경독인 기억상실성 패독 domoic aicd (DA)를 생산하여 주목받고 있는 속이다. 최근 2010년 여름철에 남해 EEZ 골재채취 단지와 거문도에서 Pseudo-nitzschia cf. brasiliana가 최고 우점종으로 출현하여 그 형태 특성을 관찰하였다. P. cf. brasiliana는 개각(valve)의 모양이 선형이었고, 길이와 폭 은 각각 51~76 μm, 1.9~2.6 μm이었으며 중간 공간(central interspace)은 없었다. 10 μm 안의 등줄안다리(fibulae) 수와 점무늬열(striae) 수는 각각 30~37, 31~37 이었다. 미소공(poroid)은 2~3줄이었으며, 1 μm안에 10~14개가 있었다. 이러한 형태 특성은 10 μm 안에 있는 등줄안다리 (fibulae) 수와 점무늬열(striae)의 수, 미소공(Poroid) 수에 서 *P. brasiliana*와 크게 차이가 났다. 따라서 *P. cf. bra-siliana*는 *P. brasiliana*의 변종이나 신종으로 추정된다.

사 사

본 논문은 국립수산과학원 수산시험연구 사업비(RP-2014-AQ-136)와 2014년 군산대학교 수산과학연구소 학 술연구비 지원에 의하여 연구되었습니다. 연구비 지원에 감사드립니다.

REFERENCES

- Amato A and M Montresor. 2008. Morphology, phylogeny, and sexual cycle of *Pseudo-nitzschia mannii* sp. nov. (Bacillariophyceae): a pseudo-cryptic species within the *P. pseudodelicatissima* complex. Phycologia 47:487-497.
- Bates SS, CJ Bird, ASW de Freitas, R Foxall, M Gilgan, LA Hanic, GR Johnson, AW McCulloch, P Odense, R Pocklington, MA Quilliam, PG Sim, JC Smith, DV Subba Rao, ECD Todd, JA Walter and JLC Wright. 1989. Pennate diatom *Nitzschia pungens* as the primary source of domoic acid, a toxin in shellfish from Eastern Prince Edward Island, Canada. Can. J. Fish. Aquat. Sci. 46:203-1215.
- Fryxell GA and GA Hasle. 2003. Taxonomy of harmful diatoms. In: Manual on harmful marine microalgae, edited by Hallegraeff, G.M., D.M. Anderson and A.D. Cembella, UNESCO, Paris, pp. 465-509.
- Hasle GR. 2002. Are most of the domoic acid-producing species of the diatom genus *Pseudo-nitzschia* cosmopolite? Harmful aglae 1:137-146.
- Kim EK. 2010. A study on the pothentially toxic *Pseudo-nitzschia* species in Tongyeong coastal waters. Master Thesis of Kusnsan National Univ. 90pp. (in Korean)
- Korea Water Resources Corporation. 2010. Marie environmental impact statement on the marine aggregate extraction complex in EEZ of Korea Strait. 491pp. (in Korean)
- Lee JH and JH Baik. 1997. Neurotoxin-producing *Pseudo*nitzschia multiseries (Hasle) Hasle, in the Coastal Waters

of Southern Korea. II. Production of Domoic Acid. Algae 12:31-38. (in Korean)

- Lim H-C, C-P Leaw, S Nyun-Pau, S-T Teng, G Usup, N Mohammad-Noor, N Lundholm, Y Kotaki and P-T Lim. 2012. Morphology and molecular characterization of *Pseudo-nitzschia* (Bacillariophyceae) from Malaysian Borneo, including the new species *Pseudo-nitzschia circumpora* sp. nov. J. Phycol. 48:1232-1247.
- Lim H-C, S-T Teng, C-P Leaw and P-T Lim. 2013. Three novel species in the *Pseudo-nitzschia pseudodelicatissima* complex: *P. batesiana* sp. nov., *P. lundholmiae* sp. nov., and *P. fukuyoi* sp. nov.(Bacillariophyceae) from the Strait of Malacca, Malaysia. J. Phycol. 49:902-916.
- Lundholm N and Ø Moestrup. 2002. The marine diatom *Pseudo-nitzschia galaxiae* sp. nov (Bacillariophyceae): morphology and phylogenetic relationships. Phycologia 41:594-605.
- Lundholm N, GR Hasle, GA Fryxell and PE Hargraves. 2002. Morphology, phylogeny and toxonomy of species within the *Pseudo-nitzschia americana* complex (Bacillariophyceae) with descriptions of two new species. *Pseudo-nitzschia brasiliana* and *Pseudo-nitzschia linea*. Phycologia 41:480-497.
- Lundholm N, Ø Moestrup, GR Hasle and K Hoef-Edmen. 2003. A study of the *P. pseudodelicatissima/cuspidata* complex (Bacillariophyceae): What is *Pseudo-nitzschia pseudodelicatissima*? J. Phycol. 39:797-813.
- Lundholm N, Ø Moestrup, Y Kotaki, K Hoef-Emden, C Scholin and P Miller. 2006. Inter- and intraspecific variation of the *Pseudo-nitzschia* delicatissima-complex (Bacillariophyceae) illustrated by rRNA probes, morphological data and phylogenetic analyses. J. Phycol. 42:464-481.
- Lundholm N, SS Bates, KA Baugh, BD Bill, LB Connell, C Léger and V Trainer. 2012. Cryptic and pseudo-cryptic diversity in diatoms - with descriptions of *Pseudo-nitzschia hasleana* sp. nov. and *P. fryxelliana* sp. nov. J. Phycol. 48: 436-454.
- Orive E, L Pérez-Aicua, H David, K Garcia-Etxebarria, A Laza-Martinez, S Seoane and I Miguel. 2013. The genus *Pseudo-nitzschia* (Bacillariophycea) in a temperate estuary with description of two new species: *Pseudo-nitzschia plurisecta* sp. nov. and *Pseudo-nitzschia abrensis* sp. nov. J. Phycol. 49:1192-1206.
- Park J-G, EK Kim and W-A Lim. 2009. Potentially toxic *Pseudo-nitzschia* species in Tongyeong coastal waters, Korea. The Sea 14:163-170. (in Korean)
- Park J-G, ES Cho, HJ Hur, JK Son and TS Lee. 1999. Occurrence and rapid differentiation of potentially toxic *Pseudo*-

nitzschia species in Chinhae Bay. In A Special Symposium on the Recent Approaches and Control Thechnique in Korean Red-tide Researches. pp. 70-84. (in Korean)

- Priisholm K, Ø Moestrup and N Lundholm. 2002. Taxonomic notes on the marine diatom genus *Pseudo-nitzschia* in the Andaman sea near the island of Phuket, Thailand, with a description of *Pseudo-nitzschia* micropora sp. nov. Diatom Res. 17:153-175.
- Quijano-Scheggia S, E Garces, K Andree, J-M Fortuno and J Camp. 2009a. Homothallic auxosporulation in *Pseudo-nitzschia brasiliana* (Bacillariophyta). J. Phycol. 45:100-107.
- Quijano-Scheggia S, E Garces, N Sampedro, KV Lenning, E Flo, K Andree, J-M Fortuno and J Camp. 2008. Identification and characterisation of the dominant *Pseudo-nitzschia* species (Bacillariophyceae) along the NE Spanish coast (Catalonia, NW Mediterranean). Sci. Mar. 72:343-359.
- Quijano-Scheggia SI, E Garcés, N Lundholm, O Moestrup, K Andree and J Camp. 2009b. Morphology, physiology, molecular phylogeny and sexual compatibility of the cryptic *Pseudo-nitzschia delicatissima* complex (Bacillariophyta), including the description of *P. arenysensis* sp. nov. Phycologia 48:492-509.
- Skov J, N Lundholm, Ø Moestrup and J Larsen. 1999. Potentially Toxic Phytoplankton 4. the diatom genus *Pseudonitzschia* (Diatomphyceae/Bacillariophyceae). ICES Identification Leaflets for plankton. LEAFLET NO. 185. ISSN 1019-1097.
- Todd ECD. 1993. Domoic acid and amnesic shellfish poisoning - a review. J. Food Protect. 56:69-83.
- Tomas CR. 1997. Identifying marine phytoplankton. Academi press. pp. 307-324.
- Wang P, J Liang, X Lin, C Chen, Y Huang, Y Gao and Y Gao. 2012. Morphology, phylogeny and ITS-2 secondary structure of *Pseudo-nitzschia brasiliana* (Bacillariophyceae), including Chinese strains. Phycologia 51:1-10.
- Wright JL, RK Boyd, ASW de Freitas, M Falk, RA Foxall, WD Hamieson, MV Laycock, AW McCulloch, AG McInnes, P Odense, VP Pathak, MA Quilliam, MA Ragan, PG Sim, P Thibault, JA Walter, M Gilgan, DJA Richard and D Dewar. 1989. Identification of domic acid, a neuroexcitatory amino acid, in toxic mussels from eastern Prince Edward Island. Can. J. Chem. 67:481-490.

Received: 26 November 2014 Revised: 6 December 2014 Revision accepted: 6 December 2014