DOI QR코드

DOI QR Code

Power Module Packaging Technology with Extended Reliability for Electric Vehicle Applications

전기자동차용 고신뢰성 파워모듈 패키징 기술

  • Yoon, Jeong-Won (Advanced Welding & Joining R&D Group/Micro-Joining Center, Korea Institute of Industrial Technology (KITECH)) ;
  • Bang, Jung-Hwan (Advanced Welding & Joining R&D Group/Micro-Joining Center, Korea Institute of Industrial Technology (KITECH)) ;
  • Ko, Yong-Ho (Advanced Welding & Joining R&D Group/Micro-Joining Center, Korea Institute of Industrial Technology (KITECH)) ;
  • Yoo, Se-Hoon (Advanced Welding & Joining R&D Group/Micro-Joining Center, Korea Institute of Industrial Technology (KITECH)) ;
  • Kim, Jun-Ki (Advanced Welding & Joining R&D Group/Micro-Joining Center, Korea Institute of Industrial Technology (KITECH)) ;
  • Lee, Chang-Woo (Advanced Welding & Joining R&D Group/Micro-Joining Center, Korea Institute of Industrial Technology (KITECH))
  • 윤정원 (한국생산기술연구원 용접접합연구실용화그룹 마이크로 조이닝 센터) ;
  • 방정환 (한국생산기술연구원 용접접합연구실용화그룹 마이크로 조이닝 센터) ;
  • 고용호 (한국생산기술연구원 용접접합연구실용화그룹 마이크로 조이닝 센터) ;
  • 유세훈 (한국생산기술연구원 용접접합연구실용화그룹 마이크로 조이닝 센터) ;
  • 김준기 (한국생산기술연구원 용접접합연구실용화그룹 마이크로 조이닝 센터) ;
  • 이창우 (한국생산기술연구원 용접접합연구실용화그룹 마이크로 조이닝 센터)
  • Received : 2014.12.10
  • Accepted : 2014.12.15
  • Published : 2014.12.30

Abstract

The paper gives an overview of the concepts, basic requirements, and trends regarding packaging technologies of power modules in hybrid (HEV) and electric vehicles (EV). Power electronics is gaining more and more importance in the automotive sector due to the slow but steady progress of introducing partially or even fully electric powered vehicles. The demands for power electronic devices and systems are manifold, and concerns besides aspects such as energy efficiency, cooling and costs especially robustness and lifetime issues. Higher operation temperatures and the current density increase of new IGBT (Insulated Gate Bipolar Transistor) generations make it more and more complicated to meet the quality requirements for power electronic modules. Especially the increasing heat dissipation inside the silicon (Si) leads to maximum operation temperatures of nearly $200^{\circ}C$. As a result new packaging technologies are needed to face the demands of power modules in the future. Wide-band gap (WBG) semiconductors such as silicon carbide (SiC) or gallium nitride (GaN) have the potential to considerably enhance the energy efficiency and to reduce the weight of power electronic systems in EVs due to their improved electrical and thermal properties in comparison to Si based solutions. In this paper, we will introduce various package materials, advanced packaging technologies, heat dissipation and thermal management of advanced power modules with extended reliability for EV applications. In addition, SiC and GaN based WBG power modules will be introduced.

Keywords

References

  1. N. Y. N. Shammas, "Present problems of power module packaging technology", Microelectron. Reliab., 43, 519 (2003). https://doi.org/10.1016/S0026-2714(03)00019-2
  2. R. John, O. Vermesan and R. Bayerer, "High temperature power electronics IGBT modules for electrical and hybrid vehicles", Proc. International Conference on High Temperature Electronics (HiTEC), Oxford, 199, International Microelectronics Assembly and Packaging Society (iMAPS) (2009).
  3. Y. H. Byun, C. M. Jeong, J. W. Yoon, C. H. Kim, C. S. Kim, B. W. Lee, S. W. Booh and U. I. Chung, "A novel and simple fabrication technology for high power module with enhanced thermal performance", Proc. 8th IEEE Vehicle Power and Propulsion Conference (VPPC 2012), Seoul, 1070 (2012).
  4. Y. Liu, "Challenges of power electronic packaging", in Power Electronic Packaging: Design, Assembly Process, Reliability and Modeling, pp.1-8, Springer Science+Business Media, New York (2012).
  5. Z. Liang, "Status and trend of automotive power packaging", Proc. 24th International Symposium on Power Semiconductor Devices and ICs (ISPSD), Bruges, 325, IEEE Power Electronics Society (PELS) (2012).
  6. K. S. Kim, D. H. Choi and S. B. Jung, "Overview on thermal management technology for high power device packaging", J. Microelectron. Packag. Soc., 21(2), 13 (2014). https://doi.org/10.6117/kmeps.2014.21.2.013
  7. I. W. Suh, H. S. Jung, Y. H. Lee, Y. H. Kim and S. H. Choa, "Heat dissipation technology of IGBT module package", J. Microelectron. Packag. Soc., 21(3), 7 (2014). https://doi.org/10.6117/kmeps.2014.21.3.007
  8. H. Lu, C. Bailey and C. Yin, "Design for reliability of power electronics modules", Microelectron. Reliab., 49(9-11), 1250 (2009). https://doi.org/10.1016/j.microrel.2009.07.055
  9. B. W. Kim and J. Hur, "Technology trend of green car power module", Communications of the Korea Information Science Society, 28(7), 21 (2010).
  10. http://www.a-star.edu.sg/ime
  11. http://www.yole.fr
  12. http://www.nrel.gov
  13. http://www.fkdelvotec.com
  14. http://www.hesse-mechatronics.com
  15. http://www.kns.com
  16. http://www.alsic.com
  17. http://www.shinetsu.co.jp
  18. http://www.infineon.com
  19. V. A. Samuel, "On the perspectives of wide-band gap power devices in electronic-based power conversion for renewable systems", Doctor degree thesis, University of Kassel, (2013).
  20. X. Cao, T. Wang, G. Q. Lu and K. D. T. Ngo, "Characterization of lead-free solder and sintered nano-silver die-attach layers using thermal impedance", Proc. International Power Electronics Conference (IPEC), Sapporo, 546 (2010).
  21. L. Jiang, "Thermo-mechanical reliability of sintered-silver joint versus lead-free solder for attaching large-area devices", Master degree thesis, Virginia Polytechnic Institute and State University, (2010).
  22. C. Gbl and J. Faltenbacher, "Low temperature sinter technology Die attachment for power electronic applications", Proc. 6th International Conference on Integrated Power Electronics Systems (CIPS), Nuremberg, 1 (2010).
  23. K. Guth, D. Siepe, J. Grlich, H. Torwesten, R. Roth, F. Hille and F. Umbach, "New assembly and interconnects beyond sintering methods", Proc. 2010 International Exhibition and Conference for Power Electronics, Intelligent Motion and Power Quality (PCIM), Nuremberg, 1 (2010).
  24. K. Guth, N. Oeschler, L. Boewer, R. Speckels, G. Strotmann, N. Heuck,, S. Krasel and A. Ciliox, "New assembly and interconnect technologies for power modules", Proc. 2012 7th International Conference on Integrated Power Electronics Systems (CIPS), Nuremberg, 1 (2012).
  25. S. W. Yoon, M. D. Glover and K. Shiozaki, "Nickel-Tin transient liquid phase bonding toward high-temperature operational power electronics in electrified vehicles", IEEE Transactions on Power Electronics, 28(5), 2448 (2012).
  26. S. W. Yoon, K. Shiozaki and T. Kato, "Double-sided nickel-tin transient liquid phase bonding for double-sided cooling", Proc. 2014 Twenty-Ninth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Fort Worth, TX, 527 (2014).
  27. P. Ning, "Design and development of high density high temperature power module with cooling system", Doctor degree thesis, Virginia Polytechnic Institute and State University, (2010).
  28. M. Marz, A. Schletz, B. Eckardt, S. Egelkraut and H. Rauh, "Power electronics system integration for electric and hybrid vehicles", Proc. 6th International Conference on Integrated Power Electronics Systems (CIPS), Nuremberg, 1 (2010).
  29. Patent Application: US 2009-0219694-A1
  30. J. M. Morelle, "Innovative connectivity for power dice in mechatronic packaging of automotive power electronics", Proc. International Conference on Automotive Power Electronics (APE), Paris, (2007).
  31. T. Martens, "Double-sided IPEM cooling using miniature heat pipes", IEEE Transactions on Components and Packaging Technologies, 28(4), 852 (2005). https://doi.org/10.1109/TCAPT.2005.848591
  32. M. Schneider-Ramelow, T. Baumann and E. Hoene, "Design and assembly of power semiconductors with double-sided water cooling", Proc. 5th International Conference on Integrated Power Systems (CIPS), Nuremberg, 83 (2008).
  33. C. M. Johnson, C. Buttay, S. J. Rashid, F. Udrea, G. A. J. Amaratunga, P. Ireland and R. K. Malhan, "Compact double-side liquid-impingement-cooled integrated power electronic module", Proc. 19th International Symposium on Power Semiconductor Devices and IC's, 2007. (ISPSD), Jeju Island, 53 (2007).
  34. Information Network, "Next-generation power semiconductors: markets materials, technologies", Market research reports, (2014).
  35. Information Network, "Silicon vs. WBG: Demystifying prospects of GaN and SiC in the electrified vehicle market", Market Research Reports, (2014).
  36. http://www.ornl.gov
  37. J. Millan, "A review of WBG power semiconductor devices", Proc. 2012 International Semiconductor Conference (CAS), Sinaia, 57, (2012).
  38. J. A. Jr. Cooper and A. Agarwal, "SiC power-switching devices-the second electronics revolution?", Proceedings of the IEEE, 90(6), 956 (2002). https://doi.org/10.1109/JPROC.2002.1021561
  39. J. B. Casady, A. K. Agarwal, S. Seshadri, R. R. Siergiej, L. B. Rowland, M. F. MacMillan, D. C. Sheridan, P. A. Sanger and C. D. Brandt, "4H-SiC power devices for use in power electronic motor control", Solid-State Electronics, 42(12), 2165 (1998). https://doi.org/10.1016/S0038-1101(98)00212-3
  40. M. Ostling, R. Ghandi and C. M. Zetterling, "SiC power devices - Present status, applications and future perspective", Proc. 2011 IEEE 23rd International Symposium on Power Semiconductor Devices and ICs (ISPSD), San Diego, 10, (2011).
  41. L. Coppola, D. Huff, F. Wang, R. Burgos, and D. Boroyevich, "Survey on high-temperature packaging materials for SiC-based power electronics modules", Proc. 2007 Power Electronics Specialists Conference (PESC 2007), IEEE, Orlando, 2234, (2007).
  42. R. Singh, "Reliability and performance limitations in SiC power devices", Microelectronics Reliability, 46, 713 (2006). https://doi.org/10.1016/j.microrel.2005.10.013
  43. F. Xu, T. J. Han, D. Jiang, L. M. Tolbert, F. Wang, J. Nagashima, S. J. Kim, S. Kulkarni and F. Barlow, "Development of a SiC JFET-based six-pack power module for a fully integrated inverter", IEEE Transactions on Power Electronics, 28(3), 1464 (2012).
  44. P. Ning, R. Lai, D. Huff, F. Wang, K. D. T. Ngo, V. D. Immanuel and K. J. Karimi, "SiC wirebond multichip phase-leg module packaging design and testing for harsh environment", IEEE Transactions on Power Electronics, 25(1), 16 (2010). https://doi.org/10.1109/TPEL.2009.2027324
  45. http://www.cree.com
  46. A. Otto, E. Kaulfersch, K. Brinkfeldt, K. Neumaier, O. Zschieschang, D. Andersson and S. Rzepka, "Reliability of new SiC BJT power modules for fully electric vehicles", Proc. 18th International Forum on Advanced Microsystems for Automotive Application (AMAA), Berlin, 1, (2014).
  47. N. Ikeda, Y. Niiyama, H. Kambayashi, Y. Sato, T. Nomura, S. Kato and S. Yoshida, "GaN power transistors on Si substrates for switching applications", Proc. IEEE, 98(7), 1151 (2010). https://doi.org/10.1109/JPROC.2009.2034397
  48. M. Acanski, J. Popovic-Gerber and J. A. Ferreira, "Comparison of Si and GaN power devices used in PV module integrated converters", Proc. 2011 IEEE Energy Conversion Congress and Exposition (ECCE), Phoenix, AZ, 1217, (2011).
  49. M. S. Shur, "GaN based transistors for high power applications", Solid-State Electronics, 42(12), 2131 (1998). https://doi.org/10.1016/S0038-1101(98)00208-1
  50. P. Saunier, C. Lee, A. Balistreri, D. Dumka, J. Jimenez, H. Q. Tserng, M. Y. Kao, P. C. Chao, K. Chu, A. Souzis, I. Eliashevich, S. Guo, J. del Alamo, J. Joh and M. Shur, "Progress in GaN performances and reliability", Proc. 2007 65th Annual Device Research Conference, Notre Dame, IN, 1548, (2007).
  51. T. Kachi, D. Kikuta and T. Uesugi, "GaN power device and reliability for automotive applications", Proc. 2012 IEEE International Reliability Physics Symposium (IRPS), Anaheim, CA, 3D.1.1 (2012).

Cited by

  1. The Effect of Eutectic Structure on the Creep Properties of Sn-3.0Ag-0.5Cu and Sn-8.0Sb-3.0Ag Solders vol.7, pp.12, 2017, https://doi.org/10.3390/met7120540
  2. Thermal Aging Characteristics of Sn-xSb Solder for Automotive Power Module vol.35, pp.5, 2017, https://doi.org/10.5781/JWJ.2017.35.5.6
  3. Numerical Prediction of Solder Fatigue Life in a High Power IGBT Module Using Ribbon Bonding vol.16, pp.5, 2014, https://doi.org/10.6113/jpe.2016.16.5.1843
  4. Sn-xSb계 솔더의 전기화학적 부식 특성 vol.36, pp.3, 2014, https://doi.org/10.5781/jwj.2018.36.3.12
  5. The Effect of Environmental Test on the Shear Strength of the Ultrasonic bonded Cu Terminal for Power Module vol.37, pp.2, 2014, https://doi.org/10.5781/jwj.2019.37.2.1
  6. Pressureless Silver Sintering Property of SiC Device and ZTA AMB Substrate for Power Module vol.37, pp.2, 2014, https://doi.org/10.5781/jwj.2019.37.2.3
  7. Effect of Sintering Conditions on Microstructure and Mechanical Strength of Cu Micro-Particle Sintered Joints for High-Power Semiconductor Module Applications vol.37, pp.2, 2019, https://doi.org/10.5781/jwj.2019.37.2.5
  8. 파워모듈의 TLP 접합 및 와이어 본딩 vol.26, pp.4, 2014, https://doi.org/10.6117/kmeps.2019.26.4.007
  9. OSP 표면처리된 FR-4 PCB기판과 Sn58%Bi 복합솔더 접합부의 미세조직 및 접합강도에 미치는 Sn-MWCNT의 영향 vol.26, pp.4, 2014, https://doi.org/10.6117/kmeps.2019.26.4.163
  10. Low-Pressure Silver Sintering of Automobile Power Modules with a Silicon-Carbide Device and an Active-Metal-Brazed Substrate vol.49, pp.1, 2020, https://doi.org/10.1007/s11664-019-07654-0
  11. 주석-니켈 마이크로 분말을 이용한 EV 전력모듈용 천이액상 소결 접합 vol.28, pp.2, 2014, https://doi.org/10.6117/kmeps.2021.28.2.071
  12. A Study of Transient Liquid Phase Bonding Using an Ag-Sn3.0Ag0.5Cu Hybrid Solder Paste vol.39, pp.4, 2021, https://doi.org/10.5781/jwj.2021.39.4.5