DOI QR코드

DOI QR Code

NIR Fluorescence Imaging Systems with Optical Packaging Technology

  • Yang, Andrew Wootae (Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School) ;
  • Cho, Sang Uk (Department of Cogno-Mechatronics Engineering, Pusan National University) ;
  • Jeong, Myung Yung (Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School) ;
  • Choi, Hak Soo (Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School)
  • Received : 2014.12.10
  • Accepted : 2014.12.29
  • Published : 2014.12.30

Abstract

Bioimaging has advanced the field of nanomedicine, drug delivery, and tissue engineering by directly visualizing the dynamic mechanism of diagnostic agents or therapeutic drugs in the body. In particular, wide-field, planar, near-infrared (NIR) fluorescence imaging has the potential to revolutionize human surgery by providing real-time image guidance to surgeons for target tissues to be resected and vital tissues to be preserved. In this review, we introduce the principles of NIR fluorescence imaging and analyze currently available NIR fluorescence imaging systems with special focus on optical source and packaging. We also introduce the evolution of the FLARE intraoperative imaging technology as an example for image-guided surgery.

Keywords

References

  1. J. V. Frangioni, "New technologies for human cancer imaging", J. Clin. Oncol., 26(24), 4012 (2008). https://doi.org/10.1200/JCO.2007.14.3065
  2. M. R. Bani, M. P. Lux, K. Heusinger, E. Wenkel, A. Magener, R. Schulz-Wendtland, M. W. Beckmann and P. A. Fasching, "Factors correlating with reexcision after breast-conserving therapy", Eur. J. Surg. Oncol., 35(1), 32 (2008).
  3. D. E. Schiller, L. W. Le, B. C. Cho, B. J. Youngson and D. R. McCready, "Factors associated with negative margins of lumpectomy specimen: potential use in selecting patients for intraoperative radiotherapy", Ann. Surg. Oncol., 15(3), 833 (2008). https://doi.org/10.1245/s10434-007-9711-2
  4. I. Besana-Ciani and M. J. Greenall, "The importance of margins status after breast conservative surgery and radiotherapy in node positive patients: a follow-up of 10-15 years", Int. Semin. Surg. Oncol., 5(1), 13 (2008). https://doi.org/10.1186/1477-7800-5-13
  5. S. Burke and G. D. Shorten, "When pain after surgery doesn't go away", Biochem. Soc. Trans., 37(1), 318 (2009). https://doi.org/10.1042/BST0370318
  6. J. H. Lee, G. Park, G. H. Hong, J. Choi and H. S. Choi, "Design considerations for targeted optical contrast agents", Quant. Imaging. Med. Surg., 2(4), 266 (2012).
  7. J. V. Frangioni, "In vivo near-infrared fluorescence imaging", Curr. Opin. Chem. Biol., 7(5), 626 (2003). https://doi.org/10.1016/j.cbpa.2003.08.007
  8. A. M. De Grand and J. V. Frangioni, "An operational near-infrared fluorescence imaging system prototype for large animal surgery", Technol. Cancer. Res. Treat., 2(6), 553 (2003). https://doi.org/10.1177/153303460300200607
  9. S. Gioux, H. S. Choi and J. V. Frangioni, "Image-guided surgery using invisible near-infrared light: fundamentals of clinical translation", Molecular imaging, 9(5), 237 (2010).
  10. S. Gioux, V. Kianzad, R. Ciocan, H. S. Choi, C. Nelson, J. Thumm, R. J. Filkins, S. J. Lomnes and J. V. Frangioni, "A low-cost, linear, DC - 35 MHz, high-power LED driver for continuous wave (CW) and fluorescence lifetime imaging (FLIM)", Proc. Society of Photo-Optical Instrumentation Engineers (SPIE), San Jose, CA, 684807 (2008).
  11. N. McAlinden, D. Massoubre, E. Richardson, E. Gu, S. Sakata, M. D. Dawson and K. Mathieson, "Thermal and optical characterization of micro-LED probes for in vivo optogenetic neural stimulation", Optics letters, 38(6), 992 (2013). https://doi.org/10.1364/OL.38.000992
  12. S. Gioux, V. Kianzad, R. Ciocan, S. Gupta, R. Oketokoun, J. V. Frangioni. "High-power, computer-controlled, light-emitting diode-based light sources for fluorescence imaging and image-guided surgery", Molecular imaging, 8(3), 237 (2009).
  13. S. L. Troyan, V. Kianzad, S. L. Gibbs-Strauss, S. Gioux, A. Matsui, R. Oketokoun, L. Ngo, A. Khamene, F. Azar and J. V. Frangioni, "The FLARE$^{TM}$‚ intraoperative near-infrared fluorescence imaging system: a first-in-human clinical trial in breast cancer sentinel lymph node mapping", Ann. Surg. Oncol., 16(10), 2943 (2009). https://doi.org/10.1245/s10434-009-0594-2
  14. Y. Ashitate, H. Hyun, S. H. Kim, J. H. Lee, M. Henary, J. V. Frangioni and H. S. Choi, "Simultaneous mapping of pan and sentinel lymph nodes for real-time image-guided surgery", Theranostics., 4(7), 693 (2014). https://doi.org/10.7150/thno.8721
  15. M. H. Park, H. Hyun, Y. Ashitate, H. Wada, G. Park, J. H. Lee, C. Njiojob, M. Henary, J. V. Frangioni and H. S. Choi, "Prototype nerve-specific near-infrared fluorophores", Theranostics, 4(8), 823 (2014). https://doi.org/10.7150/thno.8696
  16. H. S. Choi, K. Nasr, S. Alyabyev, D. Feith, J. H. Lee, S. H. Kim, Y. Ashitate, H. Hyun, G. Patonay, L. Strekowski, M. Henary and J. V. Frangioni, "Synthesis and in vivo fate of zwitterionic near-infrared fluorophores", Angew. Chem. Int. Ed. Engl., 50(28), 6258 (2011). https://doi.org/10.1002/anie.201102459
  17. H. Hyun, M. W. Bordo, K. Nasr, D. Feith, J. H. Lee, S. H. Kim, Y. Ashitate, L. A. Moffitt, M. Rosenberg, M. Henary, H. S. Choi and J. V. Frangioni, "cGMP-Compatible preparative scale synthesis of near-infrared fluorophores", Contrast media and molecular imaging, 7(6), 516 (2012). https://doi.org/10.1002/cmmi.1484
  18. H. Hyun, H. Wada, K. Bao, J. Gravier, Y. Yadav, M. Laramie, M. Henary, J. V. Frangioni and H. S. Choi, "Phosphonated near-infrared fluorophores for biomedical imaging of bone", Angew. Chem. Int. Ed., 126(40), 10844 (2014). https://doi.org/10.1002/ange.201404930
  19. H. Wada, H. Hyun, C. Vargas, J. Gravier, G. Park, S. Gioux, J. V. Frangioni, M. Henary and H. S. Choi, "Pancreas-targeted NIR fluorophores for dual-channel image-guided abdominal surgery", Theranostics, 5, 1 (2015). https://doi.org/10.7150/thno.10259
  20. H. S. Choi, S. L. Gibbs, J. H. Lee, S. H. Kim, Y. Ashitate, F. Liu, H Hyun, G. Park, Y. Xie, S. Bae, M. Henary and J. V. Frangioni, "Targeted zwitterionic near-infrared fluorophores for improved optical imaging", Nature biotechnology, 31(2), 148 (2013). https://doi.org/10.1038/nbt.2468
  21. M. Hutteman, J. R. van der Vorst, K. N. Gaarenstroom, A. A. Peters, J. S. Mieog, B. E. Schaafsma, C. W. Lowik, J. V. Frangioni, C. J. van de Velde and A. L. Vahrmeijer, "Optimization of near-infrared fluorescent sentinel lymph node mapping for vulvar cancer", Am. J. Obstet. Gynecol., 206(1), 89-e1 (2012).
  22. H. S. Choi, W. Liu, F. Liu, K. Nasr, P. Misra, M. G. Bawendi and J. V. Frangioni, "Design considerations for tumour-targeted nanoparticles", Nat. Nanotechnol., 5(1), 42 (2010). https://doi.org/10.1038/nnano.2009.314

Cited by

  1. Fluorescence molecular imaging systems for intraoperative image-guided surgery 2017, https://doi.org/10.1080/05704928.2017.1323311
  2. Intraoperative biophotonic imaging systems for image-guided interventions vol.8, pp.1, 2018, https://doi.org/10.1515/nanoph-2018-0134
  3. Real-Time Fluorescence Imaging in Thoracic Surgery vol.52, pp.4, 2014, https://doi.org/10.5090/kjtcs.2019.52.4.205