DOI QR코드

DOI QR Code

Growth of Non-Polar a-plane ZnO Layer On R-plane (1-102) Sapphire Substrate by Hydrothermal Synthesis

저온 수열 합성법에 의해 (1-102) 사파이어 기판상에 성장된 무분극 ZnO Layer 에 관한 연구

  • Jang, Jooil (School of Applied Chemical Engineering, Chonnam National University) ;
  • Oh, Tae-Seong (Department of Materials Science and Engineering, Hongik University) ;
  • Ha, Jun-Seok (School of Applied Chemical Engineering, Chonnam National University)
  • 장주일 (전남대학교 응용화학공학부) ;
  • 오태성 (홍익대학교 신소재공학부) ;
  • 하준석 (전남대학교 응용화학공학부)
  • Received : 2014.12.11
  • Accepted : 2014.12.22
  • Published : 2014.12.30

Abstract

In this study, we grew non-polar ZnO nanostructure on (1-102) R-plane sapphire substrates. As for growth method of ZnO, we used hydrothermal synthesis which is known to have the advantages of low cost and easy process. For growth of non-polar, the deposited AZO seed buffer layer with of 80 nm on R-plane sapphire by radio frequency magnetron sputter was annealed by RTA(rapid thermal annealing) in the argon atmosphere. After that, we grew ZnO nanostructure on AZO seed layer by the added hexamethylenetramine (HMT) solution and sodium citrate at $90^{\circ}C$. With two types of additives into solution, we investigated the structures and shapes of ZnO nanorods. Also, we investigate the possibility of formation of 2D non-polar ZnO layer by changing the ratio of two additives. As a result, we could get the non-polar A-plane ZnO layer with well optimized additives' concentrations.

본 연구에서는 낮은 비용과 간단한 공정의 장점을 가지고 있는 저온수열합성법을 이용하여 r-plane (1-102) sapphire 기판 위에 non-polar a-plane ZnO 박막을 성장하였다. 일반적으로 nanorod 형태의 ZnO를 성장시키는 특성을 보이는 Hexamethylenetetramine (HMT)와 2D layer 형태의 ZnO를 성장특성을 보이는 것으로 알려진 sodium citrate, 두 가지 전구체를 동시에 첨가하여 성장 하였을 때 몰 농도의 변화에 따른 ZnO 성장 특성을 비교해 보았다. ZnO 구조체의 형태와 특성 변화에 대하여 field emission scanning electron microscope (FE-SEM), high resolution X-ray diffraction(HRXRD)을 이용하여 분석을 진행하였다. 결과적으로, 두 가지의 용액의 특정 몰 농도일 때 r-plane (1-102) sapphire 기판 위에서 non polar a-plane (11-20) ZnO 구조체가 성장 될 수 있음을 확인 하였다. 이는 첨가제 조건에 의하여 c축 성장을 억제시키고, 측면 성장을 촉진시키는 반응에 의한 것으로 생각된다.

Keywords

References

  1. P. Nunes, B. Fernandes, E. Fortunato, P. Vilarinho, R. Martins, "Performances presented by zinc oxide thin films deposited by spray pyrolysis", Thin Solid Films, 337, 176 (1999). https://doi.org/10.1016/S0040-6090(98)01394-7
  2. H. C. Chou, A. Mazady, A. Rivera and M. Anwar, "Energy Scavenging Using ZnONanorods Grown on Flexible Substrates", Electronic Materials Conference, University Park, PA, USA, Jun. 20 (2012).
  3. Y. Ryu, T. S. Lee, J. A. Lubguban, H. W. White, B. J. Kim, Y. S. Park and C. J. Youn, "Next generation of oxide photonic devices: ZnO-based ultraviolet light emitting diodes", Appl. Phys. Lett., 88, 241108 (2006). https://doi.org/10.1063/1.2210452
  4. S. Liang, H. Sheng, Y. Liu, Z. Huo, Y. Lu and H. Shen, "ZnO Schottky ultraviolet photodetectors", J. Cryst. Growth, 225, 110 (2001). https://doi.org/10.1016/S0022-0248(01)00830-2
  5. U. Rau, M. Schmidt, "Electronic properties of ZnO/CdS/Cu(In,Ga)$Se_2$ solar cells - aspects of heterojunction formation", Thin Solid Films, 387, 141 (2001). https://doi.org/10.1016/S0040-6090(00)01737-5
  6. T. P. Chou, Q. F. Zhang, G. E. Fryxell and G. Z. Cao, "Hierarchically Structured ZnO Film for Dye-Sensitized Solar Cells with Enhanced Energy Conversion Efficiency", Adv. Mater., 19 (2007) 2588-2592. https://doi.org/10.1002/adma.200602927
  7. M. H. Jeong, J. M. Kim, S. H. Yoo, C. W. Lee and Y. B. Park, "Effect of PCB Surface Finishs on Intermetallic Compound Growth Kinetics of Sn-3.0 Ag-0.5 Cu Solder Bump", J. Microelectron. Packag. Soc., 17(1), 81 (2010).
  8. G. T. Lim, B. J. Kim, K. W. Lee, M. J. Lee, Y. C. Joo and Y. B. Park, "Study on the Intermetallic Compound Growth and Interfacial Adhesion Energy of Cu Pillar Bump", J. Microelectron. Packag. Soc., 15(4), 17 (2008).
  9. Y. Dai, Y. Zhang, Q. K. Li and C. W. Nan, "Synthesis and optical properties of tetrapod-like zinc oxide nanorods", Chem. Phys. Lett., 358, 83 (2002). https://doi.org/10.1016/S0009-2614(02)00582-1
  10. S. C. Liu and J. J. Wu, "Growth of Highly Oriented ZnO Nanorods by Chemical Vapor Deposition", MRS Proc., 703, V2 (2001).
  11. J. H. Choi, H. Tabata and T. Kawai, "Initial preferred growth in zinc oxide thin films on Si and amorphous substrates by a pulsed laser deposition", J. Gryst. Growth, 226, 493 (2001). https://doi.org/10.1016/S0022-0248(01)01388-4
  12. D. Pradhan and K. T. Leung, "Controlled Growth of Two-Dimensional and One-Dimensional ZnO Nanostructures on Indium Tin Oxide Coated Glass by Direct Electrodeposition", Langmuir, 24(17), 9707 (2008). https://doi.org/10.1021/la8008943
  13. L. E. Greene, M. Law, D. H. Tan, M. Montano, J. Goldberger, G. Somorjai and P. D. Yang, "General route to vertical ZnO nanowire arrays using textured ZnO seeds", NanoLett., 5, 1231 (2005). https://doi.org/10.1021/nl050788p
  14. L. Vayssieres, "Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions", Adv. Mater., 15, 464 (2003). https://doi.org/10.1002/adma.200390108
  15. L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykally, P. Yang, "Low-Temperature Wafer-Scale Production of ZnO Nanowire Arrays", Angew. Chem. Int. Ed., 42(26), 3031 (2003). https://doi.org/10.1002/anie.200351461
  16. A. P. de Moura, R. C. Lima, M. L. Moreira, D. P. Volanti, J. W. M. Espinosa, M. O. Orlandi, P. S. Pizani, J. A. Varela and E. Longo, "ZnO architectures synthesized by a microwave-assisted hydrothermal method and their photoluminescence properties", Solid State Ionics., 181, 775 (2010). https://doi.org/10.1016/j.ssi.2010.03.013
  17. P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche and K. H. Ploog, "Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes", Nature, 406, 865 (2000). https://doi.org/10.1038/35022529
  18. Y. Chen, D. M. Bagnall, H. J. Koh, K. T. Park, K. Hiraga, Z. Zhu and T. Yao, "Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire: Growth and characterization", J. Appl. Phys., 84, 3912 (1998). https://doi.org/10.1063/1.368595
  19. J. J, Zhu, T. Aaltonen, V. Venkatachalapathy, A. Galeckas and A. Yu. Kuznetsov, "Structural and optical properties of polar and non-polar ZnO films grown by MOVPE", J. Crystal Growth, 310(23), 5020 (2008). https://doi.org/10.1016/j.jcrysgro.2008.07.117
  20. Y. Kashiwaba, T. Abe, S. Onodera, F. Masuoka, A. Nakagawa, H. Endo, I. Niikura and Y. Kashiwaba, "Comparison of non-polar ZnO films deposited on single crystal ZnO and sapphire substrates", J. Crystal Growth, 298, 477 (2008).
  21. D. -H. Mun, S. J. Bak, J. -S. Ha, H. -J. Lee, J. K. Lee, S. H. Lee and Y. B. Moon, "Effects of Precursor Concentration on the Properties of ZnO Nanowires Grown on (1-102) R-Plane Sapphire Substrates by Hydrothermal Synthesis", J. Nanosci. Nanotechnol., 14, 5970 (2014). https://doi.org/10.1166/jnn.2014.8308
  22. S. Baruah and J. Dutta, "Hydrothermal growth of ZnO nanostructures", Sci. Techno. Adv. Mater., 10(1), 013001 (2009). https://doi.org/10.1088/1468-6996/10/1/013001
  23. D. Andeen, J. H. Kim, F. F. Lange, G. K. L. Goh and S. Tripathy, "Lateral Epitaxial Overgrowth of ZnO in Water at $90^{circle}C$", Advanced Funcitonal Materials, 16(6), 799 (2006). https://doi.org/10.1002/adfm.200500817
  24. M. N. R. Ashfold, R. P. Doherty, N. G. Ndifor-Angwafor, D. J. Riley and Y. Sun, "The kinetics of the hydrothermal growth of ZnO nanostructures", Thin Solid Films, 515, 8679 (2007). https://doi.org/10.1016/j.tsf.2007.03.122
  25. L. Schmidt-Mende, J. L. MacManus-Driscoll, "ZnO - nanostructures, defects, and devices", Mater. Today, 10(5), 40 (2007).