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In recent years, coding education has been globally emphasized and the Free Semester System 

will be executed to the public schools in Korea from 2016. With the introduction of the Free 

Semester System and the rising demand of Computational Thinking (CT) capacity, this 

research aims to design ‘learning environment’ in which learners can design and con-

struct mathematical objects through computers and print them out through 3D printers. 

Furthermore, it will design learning mathematics by constructing the figurate number 

patterns from ‘soma cubes’ in the playing context and connecting those to algebraic and 

combinatorial patterns, which will allow students to experience mathematical connectivi-

ty. It is expected that the activities of designing figurate number patterns suggested in 

this research will not only strengthen CT capacity in relation to mathematical thinking 

but also serve as a meaningful program for the Free Semester System in terms of career 

experience as 3D printers can be widely used.  
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Computational Thinking (CT) is a key capacity required for creative problem-solving 

in the 21st century, and there is an increasing emphasis on the coding education to 

strengthen CT. In Korea, the ‘Free Semester System’ will be introduced in middle schools 

with the aim of letting students find their “dreams” and “talents” while they are liberated 

from the burden of taking exams for one semester and go through real-life experience of 

problem-solving, communication and career exploration. Promoting CT is in line with the 

purpose of the ‘Free Semester System’ as it is a core capacity needed for nurturing com-

plicated and creative thinking in connection with mathematics, science and art and is re-

lated to various careers needed for the future society. Chapter 1 will discuss how to en-

hance CT demanded by the contemporary society under the introduction of the ‘Free Se-

mester System’ and how it will be connected to mathematics curriculum. 

1.1. Computational Thinking and Coding Education  

There have been many attempts by American schools in 1980s to introduce program-

ming in their curriculums, but the demand for programming education fell in mid-1990s 

with the introduction of CD-ROM. However, the world is suddenly witnessing an increas-

ing emphasis on coding education for the last couple of years. In the United States, non-

profit organizations such as code.org are providing free on-line coding education pro-

grams and Bill Gates, the founder of Microsoft, and Mark Zuckerberg, the founder of Fa-

cebook, have also joined in the campaigns such as ‘Hour of Code’ which aim for enhanc-

ing computer programming and coding education. Moreover, in the UK, software coding 

will be included in the mandatory course for every school curriculum from this year’s fall 

semester and teachers in elementary, middle and high schools will be trained to become 

coding experts. With the rise in the emphasis of coding education these days in Korea, the 

Ministry of Science, ICT and Future Planning introduced the ‘Software Professional 

Training Course’ while developing its education model through Science, Technology and 

Society program. 

These days the term ‘coding’ is replacing ‘programming.’ The existing programming 

education stressed specialized ‘computational language’ such as Java/Java Script, Python, 

and C/C++, HTML, mostly used by computer scientists and programming experts. These 

days, however, coding education emphasizes the importance of enhancing ‘CT.’ Cuny, 

Snyder & Wing (2010) defined CT as “the thought processes involved in formulating 

problems and their solutions so that the solutions are represented in a form that can be 

effectively carried out by an information-processing agent” and the key is the capacity for 

‘abstractionism’ and ‘automation.’ ‘Abstractionism’ is the capacity to collect and analyze 

data needed for analysis and problem-solving while building problem-solving models 

after selecting necessary factors. ‘Automation’ is the capacity to realize these models into 
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computing system and automating the problem-solving (Lee, 2014). CT provides special 

perspective to solve problems as it expands the principle of computer science into other 

areas, divides problems into smaller sectors, reorganizes their relationships and constructs 

again an algorithm covering the entire structure (Kafai & Burke, 2013). As an important 

tool to let students go beyond simplistic learning limited to one sector and enable com-

prehensive and complicated thoughts, CT is hailed as a key capacity for creative problem 

solving required in the 21st century.  

1.2. Computational Thinking and Free Semester  

In line with the emphasis on coding education, structural changes are emerging in the 

education system of Korean public schools. In 2013, the Ministry of Education an-

nounced the ‘Plan for Implementing Pilot Free Semester System’ for middle schools. The 

Free Semester System ‘introduces flexibility into the curriculum for middle school stu-

dents to help them find their genuine “dreams” and “talents” by freeing them from any 

types of tests during one semester and letting them go through various experience like 

career exploration.’ At present, it is being tested at various research schools and will be 

expanded to the entire country from 2016.  

When introducing the Free Semester System, the Korean Educational Development 

Institute (KEDI) suggested enhancing problem-solving, communication, and discussion 

as a way to diversify ‘teaching and learning methods.’ Furthermore, the Seoul Metropoli-

tan Office of Education is recommending running classes through convergence and inte-

gration during the free semester by connecting the curriculum to career and converging 

different subjects. However, it seems that the system has already faced significant diffi-

culties in schools that have introduced them. Teachers rarely have any manuals related to 

the Free Semester. In performance evaluation, majority of the subjects focus on ‘studying 

scholars, writing journals on book reading related to careers,’ far from being future career 

education connected to the curriculum (Cho, So, Jung & Lee, 2014).  

The world of job is changing fast. Historically, many jobs have been disappearing and 

emerging. The Industrial Revolution brought a significant number of industrial workforc-

es whereas the advancement of the information technology created a lot of IT jobs. It is a 

huge challenge to devise curriculum related to career education in the midst of the fast 

changing society. There is a growing need for mathematics education to adjust itself to 

the changing society. During the Free Semester System, math education should be more 

than just solving problems in the textbooks. It should ultimately contribute to the career 

exploration as students use math in the process of convergent problem solving and find 

answers to the questions of ‘why do we have to learn math?’ and ‘how is math applied to 

different sectors?’ 
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As a key capacity to nurture complicated and creative thinking in connection with 

math, science and art and highly relevant to various jobs needed in the future society, CT 

is in line with the fundamental spirit of the ‘Free Semester System.’ Moreover, 3D print-

ers, which are becoming widely commercialized these days, provide specific methods of 

realizing virtual artifact that has been composed through CT. With the introduction of the 

Free Semester System and the rising demand of CT capacity, this research aims to design 

‘learning environment’ in which learners can design and construct mathematical objects 

through computers and print them out through 3D printers. Furthermore, it will design 

learning mathematics by constructing the figurate number patterns from ‘soma cubes’ in 

the playing context and connecting those to algebraic and combinatorial patterns, which 

will allow students to experience mathematical connectivity. It is expected that the activi-

ties of designing figurate number patterns suggested in this research will not only 

strengthen CT capacity in relation to mathematical thinking but also serve as a meaning-

ful program for the Free Semester System in terms of career experience as 3D printers 

can be widely used.  

 

 

2. 3D CUBE PATTERN DESIGN AND 3D PRINTER 

 

Through constructionism learning theory, Papert (1980) stresses the importance of 

‘learning by design’ whereby children are naturally led to the process of composing 

knowledge mentally by engaging in activities that make physically meaningful objects. 

After all, learning is an active process in which learners gain new understanding on the 

world around them through active exploration and educators’ role should be providing an 

appropriate environment in which learners engage in exploring, creating and doing the 

meaningful world (Resnick, 2002; Jenkins, 2012). In this context, Papert devised LOGO 

MicroWorlds where learners can construct geometric objects by simply giving basic 

commands such as “forward” and “rotate.” On the basis of LOGO’s turtle metaphor, this 

research devises a ‘learning environment,’ where learners can construct and explore 3D 

objects, and suggests ‘mathematical context’ where it can be used and studied.  

2.1. 3D Turtle Representation System and 3D Printer 

LOGO has been serving as a specific method and tool for realizing constructionism as 

it allows learners to design and construct virtual artifact through turtle agents. Further-

more, LOGO-based activities are based on CT as they enable learners to take geometric 

properties into abstract level through embodied simulation, which is in turn automatically 

changed into a language that turtle agents can understand. Cho, Kim, Song & Lee (2010) 

and Cho, Song & Lee (2011) focused on the fact that the existing LOGO was too difficult 
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for students as they are programming languages. They therefore changed the ‘action 

command’ into simple ‘action symbols’ and designed ‘3D turtle representation system’ so 

that three-dimensional objects can be constructed. In other words, the existing LOGO 

used a metaphor of drawing figures through lines but the three-dimension LOGO uses a 

metaphor of making spatial objects as turtle agents pile up cubes. As shown in Figure 1, 

3D turtle representation system is composed of action letters s and t that move from front 

to rear, action letters R and L that rotate to right or left, and action letters u and d that 

move from up and down. The representation system has been developed into three ver-

sions depending on whether the turtle agents move on absolute coordinate or relative co-

ordinate (Lee et al., 2010). 
 

 

 

 

 

 

 

initial state s s R s u 
 

Figure 1. 3D turtle representation system 
 

Thanks to the development of 3D printers, it has become possible to realize the arti-

facts made at virtual space through the 3D turtle representation system into concrete 

forms. Figure 2 shows the airplane made through the turtle representation system and ac-

tually printed out through 3D printer. With the spread of 3D printers, the traditional em-

bodied simulation process that served as a communication channel between turtle agents 

and learners has now evolved into communication between humans and machines; and 

artifacts composed in the virtual world can now be realized in a real world. 
 

 

 

 

 

(a) airplane made in virtual world using turtle representation 
(b) airplane printed by 3D 

printer 
 

Figure 2. 3D artifact 

2.2. Figurate Number Pattern Design and Computational Thinking 

Recently developed software such as Minecraft and Google Sketchup enables model-

ing 3D objects easily by simply using a computer mouse and those objects can be printed 
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out through 3D printers. Yet, the turtle representation introduced above lets users to de-

sign 3D objects not through a mouse but through symbol coding. The 3D objects there-

fore show not only the final ‘product’ but also the ‘process’ of how the product was made 

and learners naturally get to use CT in the process. Therefore the ‘hard fun’ learners expe-

rience using the turtle representation is clearly different from the ‘soft fun’ learners expe-

rience through a computer mouse. 

For instance, let us suppose that we are making a triangular pyramid number step by 

step by using the turtle representation as it is shown in Figure 3. Some learners may make 

3D objects by randomly moving the course of the turtle. However, if learners are asked to 

make 3D objects with the minimum use of letters, how should they approach making a 

3D object? Figure 3 (a) can be easily made as it is a simple form composed of just four 

cubes. But as we move on to Figure 3 (b) and (c), the number of letters needed increases. 

In this case, to use the letter as few as possible, students should approach the cube not as 

a ‘shape’ but as a ‘pattern.’ In other words, students need to figure out and focus on the 

regularity of the object, such as which part is being repeated and which part is being 

gradually increased. As we can see from Figure 3, letter X substitutes for repetitive pat-

terns to express the triangular pyramid number compressively and expressed general 

terms using recursions of ‘for next’ and symbol n. This kind of structural expression is the 

result of generalization of regularity by seeing objects as ‘pattern’ rather than ‘shape.’ 

 

Figure 3. Right type triangular pyramidal number and their turtle representations 

Right type  

triangular 

pyramidal 

number 

 

(a) 2nd (b) 3rd (c) 4th 

turtle repre-

sentation us-

ing certain 

patterns 

do s 

do s[Rs[u]] 

do s 

do s[Rs[u]] 

do s[Rs[u]s[uu]] 

do s 

do s[Rs[u]] 

do s[Rs[u]s[uu]] 

do s[Rs[u]s[uu]s[uuu]] 

turtle repre-

sentation us-

ing substitu-

tion and re-

cursion 

n=1 

X='s[(m)u](m=m+1)' 

for k=0 to n 

do (m=1)s[R(k)X] 

next 

n=2 

X='s[(m)u](m=m+1)' 

for k=0 to n 

do (m=1)s[R(k)X] 

next 

n=3 

X='s[(m)u](m=m+1)' 

for k=0 to n 

do (m=1)s[R(k)X] 

next 

‘[ ]’is a symbol to save a turtle’s position and recall it. For example, when we command 

'A[B]C', the turtle makes A, memorizes its position, makes B, then comes back to the re-

membered position, and makes C. 
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Now, just by changing the value of n, we can easily make a triangular pyramid at any 

steps, whether in 10th or 20th steps. As ‘substitution,’ ‘recursion,’ and ‘generalization’ are 

all key concepts in mathematics, activities of designing figurate number patterns can be 

evaluated as an application of CT to math curriculum. As students print out the 3D ob-

jects they make through 3D printers, they will also enjoy ‘hard fun.’  

 

 

3. FIGURATE NUMBER PATTERN AND ITS APPLICATION TO MATHE-

MATICAL INQUIRE 

 

‘Figurate number’ means ‘the number arranged to correspond to the shape of a figure’ 

and was used as a tool to express numbers in ancient Greece, long before letters were in-

vented. Figurate numbers can form plane figures such as triangular and quadrangle, three-

dimensional solids such as triangular pyramid and quadrangular pyramid, and fractal fig-

ures such as snowflake and Menger Sponge. Figurate numbers serve as an entry tool for 

children to approach abstract ‘numbers’ through concrete ‘figures,’ giving them intuitive 

understanding on algebraic patterns. It also contains plenty of mathematical contexts such 

as sequence and series, flow chart, recurrence formula and combinations. That is why 

many mathematicians have been highly interested in figurate numbers and have studied 

how to apply and use them in education. Nonetheless, there have been limitations in ex-

pressing three-dimensional solid figures as figurate numbers have been generally ex-

pressed on two-dimensional paper with dots and circles. Education using figurate num-

bers, therefore, have been developed only at basic levels such as triangular number and 

quadrangular number. For more complicated figurate numbers, calculation with ‘formula’ 

has been given much more emphasis than ‘figures.’ Chapter 3 generalizes figurate num-

ber patterns from three types of soma cubes and suggests mathematical contexts where 

these generalizations can be studied from ‘algebraic’ and ‘combinatorial’ perspectives.  

3.1. Polygonal Number: Triangular Number and Quadrangular Number 

Triangle is one of the most basic figures that make up polygons and all types of poly-

gons can be made from triangles. Similarly, triangular number forms the basis of plane 

figurate numbers. Triangular number is the number that corresponds with the figure of a 

triangle. Let us note the first-step triangular number as t1, the second-step triangular num-

ber as t2, the third-step triangular number as t3, and the n-th step triangular number as tn. 

As we can see from Figure 4(a), the second-step triangular number t2 is made by adding 

two cubes on the first-step triangular number t1 and the third-step triangular number t3 is 

made by adding three cubes on the second-step triangular number t2. Such pattern shows 

that the triangular number is an aggregate of a series of natural numbers. For instance, the 
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first-step triangular number t1 is 1, the second-step triangular number t2 is 1+2, the 

third-step triangular number t3 is 1+2+3, and the n-th step triangular number tn is an ag-

gregate of a consecutive sequence of natural numbers starting from 1 to n. From this, we 

can get the idea of getting an aggregate of a consecutive sequence of natural numbers. For 

example, Figure 5 shows that an aggregate of two fifth-step triangular numbers 2t5 is 5×6. 

If we generalize this to n-th step triangular number, an aggregate of two triangular num-

bers 2tn is n(n+1) and if we divide the two sides by 2, it becomes tn=n(n+1)/2. This formu-

la is also famously known as the one suggested by Mathematician Carl Friedrich Gauss in 

his early childhood as he figured out how to add consecutive natural numbers from one to 

ten.  

Let is now expand our discussion 

from triangular number to quadrangu-

lar number. Quadrangular number is 

the number that corresponds to the fig-

ure of quadrangular and can be con-

structively approached from triangular 

numbers. As we can see from Figure 

4(b), the first-step quadrangular s1 is 

the same with the first-step triangular number t1, the second-step quadrangular number s2 

is an aggregate of the first-step triangular number t1 and the second-step triangular num-

ber t2, and the third-step quadrangular number s3 is an aggregate of the second-step trian-

gular number t2 and the third-step triangular number t3. If we generalize this pattern, the 

n-th step quadrangular number sn is an aggregate of the n–1-th step triangular number tn–1 

and the n-th step triangular number tn.  

Since quadrangular number is a square number of the length of the square’s side, the 

n-th step quadrangular number sn is n
2
. Furthermore, quadrangular number is an aggregate 

(a) Triangular number        (b) Quadrangular number  
 

Figure 4. Polygonal number 
 

Figure 5. Sum of triangular numbers 
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of consecutive gnomon
3
 numbers. For example, as we can see from Figure 6, the fifth-

step quadrangular number s5 is the sum of five steps of consecutive gnomon numbers. In 

this case, gnomon number is a figurate number showing odd numbers for each step and is 

the sum of five consecutive odd numbers starting from 1. If we generalize it, n-th step 

quadrangular number is an aggregate of consecutive odd numbers from 1 to n.  

 

 

 

 

 

 

 

 

Based on the idea of Figure 6 that quadrangular number is an aggregate of consecutive 

gnomon numbers, let us think of a quadrangular number in which the length of one side is 

composed of a sum of consecutive natural numbers. At this point, we need to think of 

gnomon numbers previously mentioned. As we can see from Figure 7(a) the 1st quadran-

gular number s1 is the same with the 1st gnomon number g1 and the (1+2)-th quadrangu-

lar number s(1+2) equals the sum of the 1
st
 gnomon number g1 and the 2nd gnomon number 

g2 and the (1+2+3)-th quadrangular number s(1+2+3) is the sum of the 1st gnomon number 

g1, the 2nd gnomon number g2 and the 3rd gnomon number g3. If we generalize this, a 

quadrangular number whose length of a side is an aggregate of consecutive natural num-

bers from 1 to n is an aggregate of n consecutive gnomon numbers. What mathematical 

facts can we find from this? 

Since gnomon is L-shaped, we can divide it into part ① and part ② like Figure 7(b). 

                                                           
3
  The term “gnomon” was originated from carpenter’s square and the famous mathematician Eu-

clid extended the term to the plane figure formed by removing a similar parallelogram from a 

corner of a larger parallelogram 

Figure 6. Sum of odd numbers and quadrangular numbers 

(a) Gnomon numbers and quadrangular numbers   (b) (n+1)th gnomon 
 

Figure 7. Sum of gnomon numbers and quadrangular numbers 
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Part ① of gnomon numbers for each step is the same with quadrangular numbers for 

each step. Since inside of part ② of gnomon 

numbers for each step is adjacent to the side of 

a quadrangular number of the previous step, 

we can think it in terms of the relationship 

with the quadrangular number of the previous 

step. First, we know that the sum of the natural 

numbers from 1 to n is n(n+1)/2. If we under-

stand this from the perspective of figures, it 

can be understood that there are n/2 blocks 

whose length is n+1. In other words, n/2 quan-

tities of quadrangular number blocks whose 

lengths are n+1 can be attached outside of the 

n-th gnomon. For instance, the outside length 

of the 2nd gnomon number is an aggregate of two consecutive natural numbers starting 

from 1. Accordingly, 2/2 blocks whose lengths are (2+1) can be attached. In other words, 

the 1 quantity of the 3rd quadrangular number can be attached to the outside of the 2nd 

gnomon number. Moreover, as the outside length of the 3rd gnomon number is equal to 

the sum of three consecutive natural numbers starting from 1, 3/2 blocks whose lengths 

are (3+1) can be attached. In other words, 1.5 quantities of the 4
th
 quadrangle numbers 

can be attached to the outside of the 3
rd

 gnomon number. Let us generalize this. Since the 

outside length of the n-th gnomon number is the sum of consecutive natural numbers 

starting from 1, n/2 quantities of quadrangular numbers whose lengths are (n+1) can be 

attached. In other words, n/2 quantities of quadrangles in the (n+1)-th can be attached to 

the outside of the n-th gnomon number. However, as we can see from Figure 7(b), Part ② 

has two areas. Therefore, n quantities of the (n+1)-th quadrangular numbers can be at-

tached to Part ② area and since there is only one (n+1)-th quadrangular number in Part 

①, a total of (n+1) quadrangles in the (n+1)-th can be attached to the (n+1)-th gnomon. 

The (n+1)-th quadrangular number is (n+1)
2
 and since there are (n+1) quantities of them 

we have (n+1)
3
 blocks at the (n+1)-th gnomon. Moreover, a quadrangular number whose 

length is the sum of consecutive natural numbers from 1 to (n+1) equals the sum of con-

secutive gnomon numbers from 1 to (n+1). From this we know that an aggregate of con-

secutive cubes from 1 to n equals the square value of an aggregate of consecutive natural 

numbers from 1 to n. 

3.2. Three Types of Soma Pieces and 3D Figurate Numbers  

Now let us expand the relationship between triangular numbers and quadrangular 

Figure 8. Sum of triangular numbers 

and triangular pyramid numbers 
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numbers in plane figurate numbers into three-dimensional figurate numbers such as trian-

gular pyramid numbers and quadrangular pyramid numbers. Triangular pyramid number 

is the number that corresponds with the shape of the triangular pyramid and it can be ap-

proached constructively from triangular numbers of each step. If we suppose that the n-th 

step triangular pyramid number is Tn, we can see from Figure 8 that the first-step triangu-

lar pyramid number T1 is equal to the first-step triangular number t1, and the second-step 

triangular pyramid number T2 is made by piling up the first-step triangular number t1 and 

the second-step triangular number t2. The third-step triangular pyramid number T3 is also 

made by piling up the first-step triangular number t1, the second-step triangular number t2, 

and the third-step triangular number t3. If we generalize this, the n-th step triangular pyr-

amid number Tn is made by accumulating triangular numbers from the first-step triangu-

lar number t1 to the n-th step triangular number tn.  

 

 

 

 

 

 

 
 

Soma cubes that have been used for children’s playing activities such as Lego blocks 

or block buildings are composed of seven soma cubes. Let us think of three soma cubes 

composed of four cubes like Figure 9. Symmetric soma cubes of Figure (a) have the 

shape of the second-step triangular pyramid number. Figure (b) and (c) are modified 

forms of symmetric soma cubes. If we put in into turtle metaphors, (b) can be called left 

type and (c) can be called right type because (b) is a metaphor of a turtle going forward 

and climbing leftward and (c) is a metaphor of a turtle going forward and climbing right-

ward. We can expand this idea into triangular pyramid numbers of the third-step and 

fourth-step, etc. In other words, three types of soma cubes are basic structures for three 

types of triangular pyramid numbers and can be generalized into symmetric triangular 

pyramid, left type triangular pyramid, and right type triangular pyramid patterns. Now let 

us examine the relationship of three-dimensional figurate numbers using left type and 

right type triangular pyramid numbers.  

From Figure 4(b) of plane figurate numbers, we can infer that the n-th step quadrangu-

lar number sn is an aggregate of the (n-1)-th step triangular number tn-1 and the n-th step 

triangular number tn. From Figure 8 we also know that three-dimensional figurate num-

bers are composed by piling up the corresponding plane figurate numbers. Therefore, we 

can expand and apply the relationship between triangular number and quadrangular num-

 

(a) symmetric (b) left type (b) right type 

Figure 9. Three types of soma pieces 
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ber in a plane figurate numbers into the relationship between triangular pyramid number 

and quadrangular pyramid number into three-dimensional figurate numbers. For example, 

Figure 10 shows that the fourth-step quadrangular pyramid number S4 is the sum of the 

third-step left type triangular pyramid number T3 and the fourth-step right type triangular 

pyramid number T4. 

 

 

 

 

 

 

Furthermore, let us consider the figurate number composed of three triangular pyramid 

numbers. First, prepare two second-step left type triangular pyramid numbers and one 

second-step right type triangular pyramid number. As shown in Figure 11, rotate by 90 

degrees the left type triangular pyramid number on the left side towards the right type 

triangular pyramid number on the middle, and take the left type triangular pyramid num-

ber on the right side to parallel movement and attach it to the right type triangular pyra-

mid number on the middle. Then, we come up with a figure in the shape of triangular pil-

lar with the base line being the second-step triangular number t2 and the height being 2+2. 

And similar patterns are repeated to the third and fourth steps. If we generalize it in the n-

th
 
step, the aggregate of the three n-th step triangular pyramid numbers 3Tn becomes a 

triangular pillar whose base line is the n-th step triangular number tn and whose height is 

(n+2). Moreover, since we can know the n-th step triangular number tn from Figure 5, the 

n-th step triangular pyramid number Tn can be inductively inferred. Furthermore, if we 

know the triangular pyramid number Tn, we can also get the n-th step quadrangular pyra-

mid number Sn from the relationship between the triangular pyramid number and the 

quadrangular pyramid number in Figure 10. However, the n-th step quadrangular pyramid 

number Sn is the sum of consecutive quadrangular numbers starting from 1 to n, and the 

n-th step quadrangular number is n
2
. Therefore, the n-th step quadrangular pyramid num-

ber Sn is an aggregate of the consecutive square numbers starting from 1 to n. Therefore, 

from the n-th step quadrangular pyramid number Sn we can get an aggregate of consecu-

tive sequence numbers from 1 to n. As we can see from this, figurate numbers not only 

form mathematical relationship among figurate numbers but also they enable us to make 

aggregate formulas of consecutive natural numbers, odd numbers, square numbers, and 

cubes. Therefore, students can understand the sequence patterns better by studying the 

patterns of figurate numbers than by hard and dull formulas.  

Figure 10. Sum of triangular pyramid numbers and quadrangular pyramid numbers 
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3.3. Combinatorial Approach of Figurate Numbers 

It is also possible to understand the patterns of figurate numbers such as triangular 

numbers and triangular pyramid numbers from a combinatorial approach. For instance, let 

us select two numbers among natural numbers from 1 to 3 in an ordered pair (x, y) allow-

ing repetition. It is a repeated permutation 3π2 in which two out of three can be selected 

repeatedly and therefore makes 3x3 ordered pair matrix like Figure 12(a). In case of per-

mutation 3P2 where repetition is not allowed, it will be the number of cases excluding the 

diagonal matrix like Figure 12(b). However, since the value of the lower triangle (x, y) 

corresponds to the value of the upper triangle (y, x) in Figure 12(b), the number of com-

binations 3C2, which do not regard orders, becomes a quadratic triangular number like 

Figure 12(c).  

Figure 11. Sum of 3 triangular pyramid numbers 

 (a)  3π2               (b) 3P2                (c) 3C2 

 

Figure 12. Combinatorial approach of 3rd triangular pyramid number 
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In other words, the quadratic triangular number equals the number of combinations of 

selecting two out of three. Likewise, cubic triangular number equals the number of com-

binations of selecting two out of four. If we generalize this, the n-th triangular number is 

the number of combinations of selecting two out of (n+1). 

Let us expand the combinatorial approach on the two-dimensional plane figurate 

numbers into the three-dimensional figurate numbers. In two-dimension, we selected two 

numbers that correspond to the second-dimensional coordinate of (x, y). Similarly, in 

three-dimension, we have to select three numbers that correspond to the three-

dimensional coordinate (x, y, z). Therefore, the n-th triangular pyramid number Tn is the 

number of combinations of selecting three out of (n+2). For instance, let us approach the 

3rd triangular pyramid number S3 using combination. Let us suppose (x, y, z) is the or-

dered pair for three consecutive numbers out of natural numbers from one to five, arrang-

ing them from smaller to larger numbers. As we can see from Figure 13, x refer to the x-

th triangle, y refers to the y-th pillar and z refers to the z-th height in ordered pairs of (x, y, 

z). Figure 15(b) shows the number of combinations that correspond to the 1st triangle at 

the 3
rd

 triangular pyramid number S3.  

 

(a) 3rd triangular pyramid number  (b) 1st triangle 

 

Figure 13. Combinatorics approach of 3rd triangular pyramid number 

 

 

4. CLOSING 
 

Figurate numbers entail a large number of mathematical contexts and there have been 

a lot of studies to use and apply them in education. However, most of them failed to use 

the spatial characteristics of the figurate numbers and focused on calculation and logical 

thinking. With the introduction of the Free Semester System and 3D printers, this re-

search designed a learning environment and its relevant mathematical contexts where stu-

dents can design for themselves three dimensional figures composed of cubes and print 

them out. Programs suggested in this research have the following educational significance. 

First, there has been an increasing emphasis on coding education these days, but it has 

been merely about teaching computational language rather than fundamental computa-
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tional thinking and failed to be connected to the curriculum. The turtle representation sys-

tem proposed in the present study can be a tool of coding education easily accessible even 

to beginners in that it is a language system comprehensible to computers and makes im-

mediate visual feedback possible at the same time. In addition, it can be a model of com-

putational thinking education that connects coding and the subject of mathematics in that, 

through activities in which figurate numbers are constructed through simple coding that 

uses a turtle metaphor, mathematical concepts such as substitution, recursion, generaliza-

tion, and variables can be learned. Figurate numbers entail a large number of mathemati-

cal contexts and there have been a lot of studies to use and apply them in education. 

However, most of them failed to use the spatial characteristics of the figurate numbers 

and focused on calculation and logical thinking. The present study designed a program 

that connects figurate numbers to coding, 3D printers, and career path exploration, thus 

allowing learning that is meaningful to learners to occur in a richer context.  

Second, while computational thinking connected to subjects such as mathematics and 

science has been emphasized in recent years, there has been practical difficulty with the 

application of such convergence education because, in the general semester system, pro-

gress must be covered within pre-established curricula, mid-term and final examinations 

must be taken, and subjects are strictly distinguished. On the contrary, the free semester 

system aims at transcending the distinction among subjects and the burden of progress 

and examinations, encouraging discussions and project learning that connect diverse 

fields, and linking such activities to career path education. The program suggested by this 

research provides meaningful mathematical experience to learners through ‘learning by 

design.’ Moreover, in that the experience of using coding and a 3D printer can provide a 

useful career path experience to those who wish to study engineering or to work in com-

puter programming or design in the future, the program can be said to fulfill the spirit of 

the free semester system. Under the Free Semester System which will be implemented 

nationwide from 2016, mathematics education should aim to encourage students to use 

mathematics beyond the scope of answering problems in the textbooks and use them in 

the process of convergent problem solving. It will ultimately enable students to realize the 

meaning of learning mathematics and better explore their future career as they find an-

swers to ‘why should we learn mathematics,’ and ‘how is math applied in different sec-

tors?’ Moreover, mathematics education should be more than doing calculations with 

pens and paper, and should provide much more fruitful and meaningful experience by 

converging them with technologies used in various sectors. Activities of studying figurate 

numbers with 3D printer have been introduced in this research and will be actually im-

plemented from the next semester in some research schools. In the next research paper, 

the outcomes and effects of applying the programs suggested in this research will be pre-

sented.  
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