DOI QR코드

DOI QR Code

Lowering the Bitterness of Enzymatic Hydrolysate Using Aminopeptidase-active Fractions from the Common Squid (Todarodes pacificus) Hepatopancreas

살 오징어(Todarodes pacificus) 간췌장으로부터 aminopeptidase 활성 획분의 쓴맛 개선 효과

  • Kim, Jin-Soo (Department of Seafood Science & Technology.Institute of Marine Industry, Gyeongsang National University) ;
  • Kim, Hye-Suk (Department of Seafood Science & Technology.Institute of Marine Industry, Gyeongsang National University) ;
  • Lee, Hyun Ji (Department of Food & Nutrition.Institute of Marine Industry, Gyeongsang National University) ;
  • Park, Sung Hwan (Department of Food & Nutrition.Institute of Marine Industry, Gyeongsang National University) ;
  • Kim, Ki Hyun (Department of Seafood Science & Technology.Institute of Marine Industry, Gyeongsang National University) ;
  • Kang, Sang In (Department of Seafood Science & Technology.Institute of Marine Industry, Gyeongsang National University) ;
  • Heu, Min Soo (Department of Food & Nutrition.Institute of Marine Industry, Gyeongsang National University)
  • 김진수 (경상대학교 해양식품공학과.해양산업연구소) ;
  • 김혜숙 (경상대학교 해양식품공학과.해양산업연구소) ;
  • 이현지 (경상대학교 식품영양학과.해양산업연구소) ;
  • 박성환 (경상대학교 식품영양학과.해양산업연구소) ;
  • 김기현 (경상대학교 해양식품공학과.해양산업연구소) ;
  • 강상인 (경상대학교 해양식품공학과.해양산업연구소) ;
  • 허민수 (경상대학교 식품영양학과.해양산업연구소)
  • Received : 2014.07.23
  • Accepted : 2014.10.14
  • Published : 2014.12.31

Abstract

Aminopeptidase-active fractions from crude extract of the hepatopancreas of a common squid (Todarodes pacificus) were obtained using acetone (AC; 30-40%) and ammonium sulfate precipitation (AS; 60-70% saturation), anion exchange (AE-II; 0.2 M NaCl) and gel filtration chromatography (GF-I; 30-50 kDa), respectively. The debittering capacity of GF-I fraction based on the aminopeptidase activity (89.2 U/mg), recovery (56.6%) and sensory evaluation (1.0) was better than that of other fractions. Release of amino acids increased as incubation time was increased, and the bitterness of the enzyme reaction mixtures decreased. Incubation with the GF-I fraction for 24 h resulted in the hydrolysis of several peptides, as revealed by reverse-phase HPLC profiles. Peaks 3, 5 and 6 showed the decreased area (%), whereas peaks 1, 2 and 4 showed the increased area. The GF-I fractions were found to be suitable for reducing bitterness in protein hydrolysates by catalyzing the hydrolysis of bitter peptides.

국내산 살 오징어 간췌장 조효소를 추출한 다음, 단백질 성질에 기초한 분획방법(용해도, 전기적 성질 및 분자량크기)으로 분획한 endoprotease 및 aminopeptidase 활성 획분들에 대한 분해 활성 비교한 다음, 이들 획분의 반응시간에 따른 쓴맛 casein 가수분해물의 쓴맛 개선 효과를 효소활성, 관능검사 및 HPLC 크로마토그램을 통하여 살펴보았다. 분획방법별 각 획분의 쓴맛 평가에 의한 쓴맛 개선 효과는 겔 여과법에 의하여 분획된 획분(GF-I, 30-50 kDa)이 가장 효과적이었다. GF-I 획분을 2% Gly-phe에 준하는 쓴맛 casein 가수분해물에 대하여 1/500의 비율로 첨가한 다음, 16시간 이상 반응시킨 가수분해물은 HPLC 크로마토그램 상에서 친수성이 강한 피크면적(피크 1, 2 및 4)은 증가한 반면, 소수성이 상대적으로 강한 피크면적(피크 3, 5 및 6)가 감소하였으며, 쓴맛 평가 결과에서도 쓴맛 개선 효과가 뚜렷하였다. 앞으로의 연구에서는 오징어 간췌장 유래 aminopeptidase의 효율적인 산업적 이용을 위한 단백질 분자량 크기에 따른 연속분획 공정을 통한 대량회수 방법 및 쓴맛 개선 가수분해물로부터 유리된 아미노산분석, 효소안정성, 기질특이성 등에 대하여 진행하고자 한다.

Keywords

References

  1. Okutani T. Cuttlefishes and Squid of the World. Seizando, Tokyo, Japan. p. 198 (2005)
  2. Stansby ME. 1976. Fish Oils in Nutrition. New York, NY, USA. pp. 6-39 (1976)
  3. Ministry of Oceans and Fisheries. Year book of marine resources. Available from: http://stat.mof.go.kr/portal/bbs/selectBbsArticle.do?bbsId=BBSMSTR_000000000006&nttId=62. Accessed Apr. 14, 2013.
  4. Raksakulthai R, Harrd NF. Purification and characterization of a carboxypeptidase from squid hepatopancreas (Illex illecebrosus). J. Agr. Food Chem. 49: 5019-5030 (2001) https://doi.org/10.1021/jf010320h
  5. Raksakulthai R, Harrd NF. Purification and characterization of aminopeptidase fractions from squid (Illex illecebrosus) hepatopancreas. J. Food Biochem. 23: 123-144 (1999) https://doi.org/10.1111/j.1745-4514.1999.tb00010.x
  6. Hameed KS, Haard NF. Isolation and characterization of cathepsin C from atlantic short finned squid Illex illecebrosus. Comp. Biochem. Physiol. 82B: 241 - 246 (1985)
  7. Gildberg A. Purification and characterization of cathepsin D from the digestive gland of the pelagic squid Todarodes sagittatus. J. Sci. Food Agr. 39: 85-94 (1987) https://doi.org/10.1002/jsfa.2740390110
  8. Heu MS, Ahn SH. Development and fractionation of proteolytic enzymes from an inedible seafood product. J. Korean Fish. Soc. 32: 458-465 (1999)
  9. Kim HS, Heu MS, Kim JS. Distribution and extraction condition of endoprotease and exoprotease from viscera of Illex argentinus. J. Korean Soc. Appl. Biol. Chem. 50: 308-315 (2007)
  10. Kim MJ, Kim HJ, Kim KH, Heu MS, Kim JS. Endoprotease and exopeptidase activities in the hepatopancreas of the cuttlefish Sepia officinalis, the squid Todarodes pacificus, and the octopus Octopus vulgaris Cuvier. Fish. Aquat. Sci. 15: 197-202 (2012) https://doi.org/10.5657/FAS.2012.0197
  11. Kim HS, Kim JS, Heu MS. Fractionation of endoprotease from viscera of Argentina shortfin squid, Illex argentinus. J. Korean Fish. Soc. 41: 176-181 (2008) https://doi.org/10.5657/kfas.2008.41.3.176
  12. Kim HS, Kim JS, Heu MS. Fractionation of exopeptidase from viscera of Argentina shortfin Squid, Illex argentinus. J. Korean Soc. Food Sci. Nutr. 37: 1009-1017 (2008) https://doi.org/10.3746/jkfn.2008.37.8.1009
  13. Kim MJ, Kim HJ, Kim KH, Heu MS, Lee JS, Kim JS. Fractionation and enzymatic characterization of endoprotease and exopeptidase from crude extracts of cuttlefish Sepia officinalis hepatopancreas. Fish. Aquat. Sci. 15: 283-291 (2012) https://doi.org/10.5657/FAS.2012.0283
  14. Haard NF. Protein hydrolysis in seafoods: In Seafoods Chemistry, Processing Technology and Quality. Shahidi F. Springer, New York, NY, USA, pp. 10-33 (1994)
  15. Liu F, Yasuda M. Debittering effect of Monascus carboxypeptidase during the hydrolysis of soybean protein. J. Indian Microbiol. Biotechnol. 32: 487-489 (2005) https://doi.org/10.1007/s10295-005-0024-9
  16. Ishibashi N, Arita Y, Kanehisa H, Kogure K, Okai H, Fukui S. Bitterness of leucine-containing peptides. Agr. Biol. Chem. 59: 2389-2394 (1987)
  17. Kim JS, Kim MJ, Kim KH, Kang SI, Park SH, Lee HJ, Heu MS. Debittering of enzymatic hydrolysate using exopeptidase active fractions from the Argentina shortfin squid Illex argentinus hepatopancreas. J. Korean Fish. Soc. 49: 142-149 (2014)
  18. Capiralla H, Hiroi T, Horokawa T, Maeda S. Purification and characterization of hydrophobic amino acids-specific endopeptidase from Halobacterium halobium S9 with potential application in debittering of protein hydrolysates. Process Biochem. 38: 571-579 (2002) https://doi.org/10.1016/S0032-9592(02)00180-2
  19. Nishiwaki T, Yoshimizu S, Furuta M, Hayashi K. Debittering of enzymatic hydrolysates using an aminopeptidase from edible Basidiomycete Grifola frondosa. J. Biosci. Bioeng. 93: 60-63 (2002) https://doi.org/10.1016/S1389-1723(02)80055-X
  20. Saha BC, Hayashi K. Debittering of protein hydrolyzates. Biotech. Advances 19: 355-370 (2001) https://doi.org/10.1016/S0734-9750(01)00070-2
  21. Izawa N, Tokuyasu K, Hayashi, K. Debittering of protein hydrolysates using Aeromonas caviae aminopeptidase. J. Agr. Food Chem. 45: 543-545 (1997) https://doi.org/10.1021/jf960784t
  22. Umetsu H, Ichishima E. Debittering mechanism of bitter peptides from soybean protein by wheat carboxypeptidase. J. Jpn. Soc. Food Sci. Technol. 35: 440-447 (1988) https://doi.org/10.3136/nskkk1962.35.440
  23. Dawson RMC, Elliot DC, Elliot WH, Jones KM. Data for Biochemical Research. 3rd ed. Oxford Univ Press, Oxford, UK, pp. 417-441 (1986)
  24. Lowry OH, Watanabe NJ, Farr AL, Randall RJ. Protein measurement with the folin-phenol reagent. J. Biol. Chem. 193: 265-275 (1951)
  25. Bumberger E, Belitz HD. Bitter taste of enzymic hydrolysates of casein. Z. Lebensm. Unters. For. 197: 14-19 (1993) https://doi.org/10.1007/BF01202693
  26. Tan PS, Van Kessel, TA, Van de Veerdonk FL, Zuurendonk PF, Bruins AP, Konings WN. Degradation and debittering of a tryptic digest from ${\beta}$-casein by aminopeptidase N from Lactococcus lactis sub sp. cremoris WG2. Appl. Environ. Microbiol. 59: 1430-1436 (1993)
  27. Matoba T, Hayashi R, Hata T. Isolation of bitter peptides from trypsin hydrolysate of casein and their chemical structure. Agr. Biol. Chem. 34: 1235-1243 (1970) https://doi.org/10.1271/bbb1961.34.1235
  28. Matoba T, Hayashi R, Hata T. Bitter peptides from tryptic hydrolysate of casein. Agr. Biol. Chem. 34: 1245-1241 (1970)
  29. Raksakulthai R, Rosenberg M, Haard NF. 2002. Accelerated cheddar cheese ripening with an aminopeptidase fraction from squid hepatopancreas. J. Food Sci. 67: 923-928 (2002) https://doi.org/10.1111/j.1365-2621.2002.tb09429.x
  30. Lin SB, Nelles LP, Cordle CT, Thomas RL. Debittering casein hydrolysates with octadecyl-siloxane (C18) columns. J. Food. Sci. 62: 665-670 (1997) https://doi.org/10.1111/j.1365-2621.1997.tb15431.x
  31. Ishibashi N, Sadamori K, Yamamoto O, Kanehisa H, Kogure K, Kikuch E, Okai H and Fukui S. Bitterness of phenylalanine- and tyrosine-containing peptides. Agr. Biol. Chem. 51: 3309-3313 (1987) https://doi.org/10.1271/bbb1961.51.3309
  32. Park SY, Lee BH. Effects of Lactobacillus casei LLG on flavor of enzyme-modified cheese. 1. Degradation of hydrophobic peptides by aminopeptidase. Korean J. Food Sci. Ani. Resour. 16: 147-154 (1996)

Cited by

  1. Recovery of serine protease inhibitor from fish roes by polyethylene glycol precipitation vol.19, pp.1, 2016, https://doi.org/10.1186/s41240-016-0016-x