DOI QR코드

DOI QR Code

Performance Improvement of ZnO Thin Films for SAW Bandpass Filter

SAW 대역 통과 필터용 ZnO 박막의 특성 개선 연구

  • Lee, Seung-Hwan (Convergence of IT Devices Institute Busan, Dong-Eui University) ;
  • Kang, Kwang-Yong (Convergence of IT Devices Institute Busan, Dong-Eui University) ;
  • Yu, Yun-Sik (Department of Radiological Science, Dong-Eui University)
  • 이승환 (동의대학교 부산IT융합부품연구소) ;
  • 강광용 (동의대학교 부산IT융합부품연구소) ;
  • 유윤식 (동의대학교 방사선학과)
  • Received : 2014.09.30
  • Accepted : 2014.11.13
  • Published : 2014.12.31

Abstract

For development of the surface acoustic wave bandpass filter(SAW-BPF), we fabricated the high quality ZnO thin films through the step-by-step(double) deposition using two different deposition methods which are pulsed laser deposition(PLD) and RF sputtering techniques. The second growth of ZnO thin films was completed by RF sputtering method on the first ZnO thin films pre-deposited by PLD method. The characteristics of ZnO thin films were analyzed by XRD, SEM and AFM systems. The FWHM of ${\omega}$-scan analysis and the minimum RMS value of surface roughness of step-by-step grown ZnO thin films were $0.79^{\circ}$ and 1.108 nm respectively. As a result, the crystallinity and the preferred orientation of the grown ZnO thin films were kept good quality and the surface roughnesses of those were improved by post-annealing process as comparison with ZnO thin film fabricated by the conventional PLD technique only. Using these proposed ZnO thin films, we demonstrated the RF device such as SAW-BPF, built by the proposed ZnO thin films, shows that it has the bandwidth of 2.98 MHz and the insertion loss of 36.5 dB at the center frequency of 260.8 MHz, respectively.

펄스 레이저 증착(Pulsed laser Deposition: PLD) 및 RF 스퍼터링 증착(Sputtering Deposition)의 단계적 적용을 통해, 표면탄성파 대역 통과 필터(Surface Acoustic Wave Bandpass Filter: SAW-BPF)용 ZnO 박막을 성장시켰다. PLD 방법으로 성장된 ZnO 박막위에 RF sputtering 방법을 사용하여 ZnO 박막을 재증착시켰으며, 성장된 ZnO 박막의 물성을 분석하기 위하여 XRD, SEM 및 AFM 분석장비를 사용하였다. 두 가지 증착 방법이 단계적으로 적용되어 성장된 ZnO 박막의 경우, 결정성과 배향성이 우수하게 유지되면서 표면거칠기가 향상되었다. 분석 결과, ${\omega}$-scan의 반치폭과 표면거칠기의 RMS 값은 각각 $0.79^{\circ}$와 1.108 nm였다. 그리고 성장된 양질의 ZnO 박막을 사용하여 SAW-BPF를 제작하여 측정한 결과는 응답 특성의 중심주파수가 260.8 MHz, 대역폭은 2.98 MHz, 그리고 삽입손실은 36.5 dB이었다.

Keywords

References

  1. W. W. Wenas, A. Yamada, K. Takahasi, M. Yoshino, and M. Konagai, "Electrical and optical properties of boron doped ZnO thin films for solar cells grown by metalorganic chemical vapor deposition", J. Appl. Phys., vol. 70, p. 7119, 1991. https://doi.org/10.1063/1.349794
  2. H. Ohta, K. Kawamura, M. Orita, M. Hirano, N. Sakura, and H. Hosono, "Current injection emission from a transparent p-n junction composed of p-$SrCu_2O_2$ /n-ZnO", Appl. Phys. Lett., vol. 77, p. 475, 2000. https://doi.org/10.1063/1.127015
  3. S. A. Studenkin, M. Cocivera, W. Kellner, and H. Pascher, "Band-edge photoluminescence in poly-crystalline ZnO films at 1.7 K", J. Luminescence, vol. 91, pp. 223-232, 2000. https://doi.org/10.1016/S0022-2313(00)00213-1
  4. F. K. Shan, G. X. Liu, Z. F. Liu, W. J. Lee, G. H. Lee, I. S. Kim, B. C. Shin, and Y. S. Yu, "Optical characterizations of ZnO thin films on Si(100) substrates deposited by pulsed laser deposition", J. Korean Phys. Soc., vol. 45, pp. 771-775, 2004.
  5. F. S. Hickemell, "DC triode sputtered zinc oxide surface elastic wave transducers", J. Appl. Phys., vol. 44, p. 1061, 1973. https://doi.org/10.1063/1.1662307
  6. S. Ono, O. Yamazaki, K. Ohji, K. Wasa, and S. Hayakawa, "SAW resonators using rf-sputtered ZnO films on glass substrates", Appl. Phys. Lett., vol. 33, p. 217, 1978. https://doi.org/10.1063/1.90320
  7. D. M. Bagnall, Y. F. Chen, Zn Zhu, T. Yao, S. Koyama, M. Y. Shen, and T. Goto, "Optically pumped lasing of ZnO at room temperature", Appl. Phys. Lett., vol. 70, p. 2230, 1997. https://doi.org/10.1063/1.118824
  8. K. B. Sundaram, A. Khan, "Work function determination of zinc oxide films", J. Vac. Sci. Technol. A, vol. 15, p. 428, 1997.
  9. F. T. J. Smith, "Structure and electrical properties of sputtered films of hafnium and hafnium compounds", Appl. Phys. Lett., vol. 41, p. 4227, 1970.
  10. Baosheng Sang, Akira Yamada, and Makoto Konagai, "Atomic layer deposition of ZnO transparent conducting oxides", Appl. Surf. Sci., vol. 112, pp. 216-222, 1997. https://doi.org/10.1016/S0169-4332(96)01022-7
  11. F. K. Shan, B. C. Shin, S. C. Kim, and Y. S. Yu, "Characterizations of Al doped zinc oxide thin films fabricated by pulsed laser deposition", J. Korean Phys. Soc., vol. 42, pp. 1374-1377, 2003.
  12. M. Rusop, K. Uma, T. Soga, and T. Jimbo, "Post-growth annealing of zinc oxide thin films pulsed laser deposited under enhanced oxygen pressure on quartz and silicon substrates", Materials Science & Engineering. B, vol. 127, pp. 150-153, 2006. https://doi.org/10.1016/j.mseb.2005.10.012
  13. T. B. Hur, G. S. Jeen, Y. H. Hwang, and H. K. Kim, "Photoluminescence of polycrystalline ZnO under different annealing conditions", J. Appl. Phys., vol. 94, pp. 5787-5790, 2003. https://doi.org/10.1063/1.1617357
  14. F. K. Shan, G. X. Liu, B. I. Kim, B. C. Shin, S. C. Kim, and Y. S. Yu, "Structural properties of zinc oxide thin films by fabrication conditions in pulsed laser deposition", J. Korean Phys. Soc., vol. 42, pp. 1157-1160, 2003.
  15. S. Takada, "Relation between optical property and crystallinity of ZnO thin films prepared by RF magnetron sputtering", J. Appl. Phys., vol. 73, pp. 4739-4742, 1993. https://doi.org/10.1063/1.354091
  16. M. Liu, X. Q. Wei, Z. G. Zhang, G. Sun, C. S. Chen, C. S. Xue, H. Z. Zhuang, and B. Y. Man, "Effect of temperature on pulsed laser deposition of ZnO films", Appl. Surf. Sci., vol. 252, pp. 4321-4326, 2006. https://doi.org/10.1016/j.apsusc.2005.07.038