DOI QR코드

DOI QR Code

Fermentation characteristics of cider from late harvest Fuji apples by a sugar tolerant yeast, Saccharomyces cerevisiae SS89

내당성 효모 Saccharomyces cerevisiae SS89에 의한 늦수확 후지 사과의 사과주 발효 특성

  • Kim, Dong-Hyun (School of Food Science and Technology, Kyungpook National University) ;
  • Lee, Sae-Byuk (School of Food Science and Technology, Kyungpook National University) ;
  • Park, Heui-Dong (School of Food Science and Technology, Kyungpook National University)
  • 김동현 (경북대학교 식품공학부) ;
  • 이새벽 (경북대학교 식품공학부) ;
  • 박희동 (경북대학교 식품공학부)
  • Received : 2014.08.06
  • Accepted : 2014.10.06
  • Published : 2014.12.30

Abstract

Normal- and late-harvested Fuji apples were fermented using the rapid-fermenting yeast strain Saccharomyces cerevisiae SS89. The late-harvest apples showed a slightly higher soluble-solid content with a lower level of total-acid and moisture (p<0.05) contents as well as hardness (p<0.05) than the normal-harvest apples. During the fermentation, the apples had similar changes in the pH and total-acid content regardless of the harvest time, but the increases in the alcohol content and yeast viable count with the decrease of the soluble-solid content were more rapid in the late-harvest apples than in the normal-harvest apples. After the completion of the fermentation, the soluble-solid and alcohol contents became very similar. The late-harvest cider showed a high total phenolic-compound content and a high DPPH radical scavenging effect, although these were slightly lower than those of the normal-harvest cider. It also showed a higher malic-acid content and higher hue color (p<0.05), Hunter's L, and b (p<0.05) values than the normal-harvest cider. In the sensory evaluation, the late-harvest cider obtained a higher score in taste and a lower score in color compared to the normal-harvest cider.

정상수확 후지와 늦수확 후지 사과를 속성 발효 효모인 S. cerevisiae SS89로 발효하면서 발효 특성을 조사하는 한편 사과주의 이화학적 특성을 조사하였다. 정상수확 및 늦수확 후지사과의 가용성 고형분 함량은 각각 13.0, $13.6^{\circ}Brix$로서 늦수확 후지 사과가 다소 높았으나 총산의 함량과 경도는 낮게 나타났으나 유의적인 차이는 없었다. 사과주의 발효 중 pH와 총산 함량의 변화는 거의 유사하였으나 가용성 고형분의 감소, 알코올 함량 및 효모 생균수의 증가에 있어서 늦수확 사과의 경우가 빠르게 나타났다. 그러나 발효 말기 잔존 가용성 고형분 함량과 최종 알코올의 농도는 수확기와 무관하게 유사한 수준을 나타내었다. 늦수확 사과주의 경우 정상수확 사과주보다 다소 낮기는 하였으나 총 페놀성 화합물의 함량이 1.27 mg/mL, DPPH 라디칼 소거능이 89.5%로서 높게 나타났다. 또한 malic acid 함량과 hue 값, 명도 및 황색도 등이 다소 높았으나 아세트알데히드, 에틸아세테이트, 고급알코올의 함량 등은 매우 유사한 수준으로 나타났다. 관능평가 결과 늦수확 사과주는 향에 있어서는 유사한 값을, 색에 있어서는 낮은 점수를 받았으며 맛에 있어서 정상수확 사과주보다 높은 점수를 얻었으나 유의적인 차이는 없었다.

Keywords

References

  1. Park HW, Park JD, Kim DM, Choi JS (2001) Freshness extension of 'Fuji' Apple to packaging materials. J Korean Postharvest Sci Tech, 8, 345-350
  2. Kim DY, Yang HC, Kim WJ, Lee YC, Kim SG (1990) Agricultural processing. Youngji Publishers, Seoul, Korea, p 216
  3. Gyeongsangbuk-do agricultural information database (2014) Composition and efficacy of apples. http://db.gba.go.kr/sub02/sub01_view.php?info_no=538&kind_code=14. Retrieved 2014-08-05
  4. Seo JY, Kim EJ, Hong SI, Y SH, Kim D (2006) Effects of mild heat treatment on microorganisms, respiratory characteristics and firmness of fuji apple. Korean J Food Sci Technol, 38, 47-51
  5. Eun DW, Choi YH (1991) Physical properties of the factors affecting the evaporation process of fruit juices. Korean J Food Sci Technol, 23, 605-609
  6. Hur SS, Choi YH (1993) Studies on the efficient concentration process of apple juice with reverse osmosis process. Korean J Food Sci Technol, 25, 321-326
  7. Han WC, Ji SH, Lee JC, Jeong C, Kang SA, Jang KH (2009) Quality characteristics of apple wine fermented with Rosa rugosa Thunb. Korean J Food Preserv, 16, 311-316
  8. Choi SH, Choi YJ, Lee AR, Park SA, Kim DH, Baek SY, Yeo SH, Rhee CH, Park HD (2011) Fermentation characteristics of freeze-concentrated apple juice by Saccharomyces cerevisiae isolated from Korean domestic grapes. Korean J Food Preserv, 18, 559-566 https://doi.org/10.11002/kjfp.2011.18.4.559
  9. Choi SH, Baek SY, Yeo SH, Park HD (2012) Rapid fermentation of freeze-concentrated ice apple wine by a sugar tolerant yeast, Saccharomyces cerevisiae SS89. Korean J Food Preserv, 19, 413-419 https://doi.org/10.11002/kjfp.2012.19.3.413
  10. Kang BH, Shin EJ, Lee SH, Lee DS, Hur SS, Shin KS, Kim SH, Son SM, Lee JM(2011) Optimization of the acetic acid fermentation condition of apple juice. Korean J Food Preserv, 18, 980-985 https://doi.org/10.11002/kjfp.2011.18.6.980
  11. Shin EJ, Kang BH, Lee SH, Lee DS, Hur SS, Shin KS, Kim SH, Son SM, Lee JM (2011) Monitoring on alcohol fermentation properties of apple juice for apple vinegar. Korean J Food Preserv, 18, 986-992 https://doi.org/10.11002/kjfp.2011.18.6.986
  12. Polychroniadou E, Kanellaki M, Iconomopoulou M, Koutinas AA, Marchant R, Banat IM (2003) Grape and apple wines volatile fermentation products and possible relation to spoilage. Bioresource Technol, 87, 337-339 https://doi.org/10.1016/S0960-8524(02)00237-7
  13. Jolicoeur C (2013) The new cider maker's handbook: A comprehensive guide for craft producers. Chelsea Green Publishing, Burlington, VT, USA, p 280-281
  14. Bell RA (2014)Wines of Canada. http://www.winesofcanada.com. Retrieved 2014-08-04
  15. Aplease (2014) Korean traditional premium apple wine. http://www.applewine.co.kr/shop/company/index.php. Retrived 2014-08-04
  16. Ministry of Food, Agriculutre, Forestry and Fisheries (2011) 2011 present processing condition of fruits. Ministry of Food, Agriculture, Forestry and Fisheries, Seoul, Korea, 11-1541000-000046-10, p 55-56
  17. Korea Alcohol & Liquor Industry Association (2014) Trends in the delivery of alcoholic beverages from the factory. http://www.kalia.or.kr/customer_support/k_statis.html. Retrieved 2014-08-04
  18. AOAC (1990) Official methods of Analysis. 15th ed. Association of Official Analytical Chemists, Washington, DC, USA, p 40-84
  19. Miller GL (1959) Use of dinitrosalicylic acid reagent for the determination of reducing sugar. Anal Chem, 31, 426-428 https://doi.org/10.1021/ac60147a030
  20. Liquors Licence Aid Center (2010) Code for analysis of alcoholic beverages. National Tax Service, Seoul, Korea, p 39, p 104-202
  21. Folin O, Ciocalteu V (1927) On tyrosine and tryptophane determinations in proteins. J Biol Chem, 27, 625-650
  22. Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic phosphotungstic acid reagents. Am J Enol Vitic, 16, 144-158
  23. Blois MS (1958) Antioxidant determinations by the use of a stable free radical. Nature, 181, 1199-1200 https://doi.org/10.1038/1811199a0
  24. Zoecklein BW, Fugelsang KC, Gump BH, Nury FS (1990) Production wine analysis. Van Nostrand Reinhold, New York, NY, USA, p 129-168
  25. Coppola ED (1984) Use of HPLC to monitor juice authenticity. Food Technol, 4, 88-91
  26. Whang HJ, Kim SS, Yoon KR (2000) Analysis of organic acid in Korean apple juice by high performance liquid chromatography. J Korean Soc Food Sci Nutr, 29, 181-187
  27. Do YS, Whang HJ, Ku JE, Yoon KR (2005) Organic acids content of the selected Korean apple cultivars. Korean J Food Sci Technol, 37, 922-927
  28. Richmond ML, Brandao SCC, Gray JI, Markakis P, Stine CM (1981) Analysis of simple sugar and sorbitol in fruit by HPLC. J Agric Food Chem, 29, 4-7 https://doi.org/10.1021/jf00103a002
  29. Kim CH, Whang HJ, Ku JE, Park KW, Yoon KR (2006) Free sugars content of selected Korean apple cultivars. Korean J Food Sci Technol, 38, 22-27
  30. Kim DH, Hong YA, Park HD (2008) Co-fermentation of grape must by Issatchenkia orientalis and Saccharomyces cerevisiae reduces the malic acid content in wine. Biotechnol Lett, 30, 1633-1638 https://doi.org/10.1007/s10529-008-9726-1
  31. SPSS (2004) SPSS statistics base 17.0 user's guide. SPSS Inc., Chicago, IL, USA, p 307-313
  32. Kim JJ, YM Park (2008) Respiratory metabolic changes in Fuji apples during prestorage exposure to freezing temperature and subsequent refrigerated storage as related to the incidence of flesh browning. Hort Environ Biotechnol, 49, 232-238
  33. Park YM (2004) Storage response of Fuji apples to postharvest near-freezing temperature exposure and subsequent elevated carbon dioxide atmospheric condition. J Korean Soc Hort Sci, 45, 31-37
  34. Bindon K, Varela C, Kennedy J, Holt H, Herderich M (2013) Relationships between harvest time and wine composition in Vitis vinifera L., cv. Cabernet Sauvignon 1. grape and wine chemistry. Food Chem, 138, 1696-1705 https://doi.org/10.1016/j.foodchem.2012.09.146
  35. Vaughan-Martini A, Martini A (1998) Saccharomyces Meyen ex Reess. In: The yerasts, a taxonomic study, Kurtzman CP, Fell JV (Editor), Elsevier, Oxford, UK, p 358-371
  36. Jackson RS (2008) Wine science: principles and applications. Academic Press, Burlington, MA, USA
  37. Korea Food & Drug Administration (2010) Food code. KFDA, Seoul Korea, p 10-3-25
  38. Vidrih R, Hribar J (1999) Synthesis of higher alcohols during cider processing. Food Chem, 67, 287-294 https://doi.org/10.1016/S0308-8146(99)00136-3
  39. Herjavec S, Tupajic P (1998) Changes in acidity, some aroma compounds and sensory properties of frankovka wine after malolactic fermentation. Food Technol Biotechnol, 36, 209-213
  40. Strehaiano P, Mota M, Goma G (1983) Effects of inoculum level on kinetics of alcoholic fermentation. Biotechnol Lett, 5, 135-140 https://doi.org/10.1007/BF00132173
  41. Park E, Ryu J, Kim T (2010) Analysis of consumer preferences for wine. Korean J Food Preserv, 17, 418-424
  42. Corso M, Ziliotto F, Rizzini FM, Teo G, Cargnello G, Bonghi C (2013) Sensorial, biochemical and molecular changes in Raboso Piave grape berries applying "double maturation raisonnee" and late harvest techniques. Plant Sci, 208, 50-57 https://doi.org/10.1016/j.plantsci.2013.03.010

Cited by

  1. Pichia anomala JK04와 Saccharomyces cerevisiae Fermivin 혼합발효에 의한 캠벨얼리 와인과 아로니아 와인의 블렌딩 효과 vol.24, pp.3, 2014, https://doi.org/10.11002/kjfp.2017.24.3.472