DOI QR코드

DOI QR Code

Treatment of Seafood Wastewater using an Improved High-rate Anaerobic Reactor

개선된 고율혐기성 공정을 이용한 수산물 가공폐수처리

  • Choi, Byeong-Yeong (Division of Environmental Engineering, Kangwon National University) ;
  • Choi, Yong-Bum (Division of Environmental Engineering, Kangwon National University) ;
  • Han, Dong-Jun (Dept. of Fire Environment & Disaster Prevention, Gangwon provincial College) ;
  • Kwon, Jae-Hyeok (Division of Environmental Engineering, Kangwon National University)
  • 최병영 (강원대학교 환경공학과) ;
  • 최용범 (강원대학교 환경공학과) ;
  • 한동준 (강원도립대학 소방환경방재과) ;
  • 권재혁 (강원대학교 환경공학과)
  • Received : 2014.11.07
  • Accepted : 2014.12.11
  • Published : 2014.12.31

Abstract

To resolve shortcomings of high-rate anaerobic processes, such as high upward flow velocity, this study sought to improve the structure of the high-rate anaerobic reactor and evaluate its performance. The improved reactor was manufactured by adjusting the diameter and dividing the reactor into three parts. The evaluation of the structurally improved reactor revealed that the reactor could stabilize a single circuit, and prevent the accumulation of solid matter and leakage of microbes, thereby stabilize the microbes. In the process of anaerobic digestion, an increase in pH and alkalinity within the reactor was presumably attributed to bicarbonate created in the process of organic matter decomposition and due to the re-dissolution of some biogas. To maintain a high rate of organic matter removal, the reactor should be operated with more than 9 hrs of HRT and an organic matter load of under $10.kgTCODcr/m^3{\cdot}d$. The methane gas generated in the anaerobic digestion process showed a high content of 65~83 % at the organic matter load of over $7.7kgTCODcr/m^3{\cdot}d$. per removal of CODcr. The methane quantity was generated at $0.10{\sim}0.23m^3CH_4/kgCOD_{rem}$, showing that it was smaller than the theoretical methane generation amount (0.35) in the STP state. In the latter part of high-rate anaerobic process, an advanced treatment process was required to remove nitrogen.

본 연구는 높은 상향유속을 가지는 고율 혐기성 공정의 단점을 해결하고자 반응조의 구조개선을 통한 고율 혐기성 반응조의 성능평가를 실시하였다. 개선된 반응조는 반응조의 직경을 조절하여 반응조를 세부분으로 구분하여 제작하였다. 구조 변경된 반응조의 성능평가 결과, 반응조 하부의 단회로 및 고형물 축적현상과 미생물 유출을 방지하여 반응조 내 미생물을 안정적으로 유지할 수 있었다. 혐기성 소화 과정에서 반응조내 pH와 알카리도 상승은 유기물 분해과정 및 biogas의 일부 재용해에 의해 생성된 중탄산염에 기인한 것으로 판단되며, 높은 유기물 제거효율을 이루기 위해서는 HRT 9 hr 이상, 유기물 부하 $10.0kgTCODcr/m^3{\cdot}d$ 이하 범위로 운전하여야 한다. 혐기성 소화과정에서 발생하는 메탄가스는 유기물 부하 $7.7kgTCODcr/m^3{\cdot}d$ 이상에서 65~83 %의 높은 함량을 나타냈으며, CODcr 제거당 메탄 발생량은 $0.10{\sim}0.23m^3CH_4/kgCOD_{rem}.$으로 STP 상태의 이론적 메탄가스 발생량(0.35)보다 낮은 것으로 조사되었으며, 고율 혐기성 공정후단에 질소제거를 위한 고도처리 공정이 필요한 것으로 판단된다.

Keywords

References

  1. Lettinga, G. High-rate anaerobic treatment of wastewater under psychrophilic conditions. Journal of Fermentation and Bioengineering, 80(5), 499-506, 1995. DOI: http://dx.doi.org/10.1016/0922-338X(96)80926-3
  2. De Man, A. W. A., Grin, P. C., Roersma, R. E., GroUe, K. C. F. & Lettinga, G. "Anaerobic treatment of municipal wastewater at low temperatures.", Anaerobic treatment. A grown-up technology. Conference papers(Aquatech '86), Amsterdam, pp. 451-466, 1986.
  3. Van der Last A. R. M. & Lettinga G, "Anaerobic treatment of domestic sewage under moderate climatic(Dutch) conditions using upflow reactors at increased superficial velocitie.", Water Science and Technology, 25(7), 167-178, 1992.
  4. Choi. Y. B., "Effects of Salt on the Biological Treatment of Seafood Wastewater.", Department of environmental Engineering, Kangwon National University of korea, TD 628-11-348, 2011.
  5. Lee, H. M. and Yang, B. S., "The Effect of Upflow Velocity on Operation Characteristics in EGSB System", J. Kor. Soc. Environ. Eng., 19(10), 1245-1258, 1997.
  6. Rongrong L., Xujie L., Qing T., Bo Y., and Jihua C., "The performance evaluation of hybrid anaerobic baffled reactor for treatment of PVA-containing desizing wastewater.", Desalination, 271(1-3), 287-294, 2011. DOI: http://dx.doi.org/10.1016/j.desal.2010.12.044
  7. Liu J., Zhong J., Wang Y., Liu Q., Qian G., Zhong L., Guo R., Zhang P., and Xu Z. P., "Effective bio-treatment of fresh leachate from pretreated municipal solid waste in an expanded granular sludge bed bioreactor.", Bioresour. Technol., 101(5), 1447-1452, 2010. DOI: http://dx.doi.org/10.1016/j.biortech.2009.07.003
  8. McCarty, P.L., McKinney, R., "Salt toxicity in anaerobic digestion.", J. Water Pollut. Control Fed. 33, 399-.415, 1961.
  9. Jewell, W. J., Richards, B. K., Cummings, R. J., White, T. E., "Methods for kinetic analysis of methane fermentation in high solids biomass digesters", Biomass and Bioenergy, 1(2), pp. 65-73, 1991. DOI: http://dx.doi.org/10.1016/0961-9534(91)90028-B