DOI QR코드

DOI QR Code

Location-dependent Reliability of Solder Interconnection on Printed Circuit Board in Random Vibration Environment

랜덤진동환경에서 솔더접합부의 인쇄회로기판내 위치에 따른 내구수명 변화 연구

  • Han, Changwoon (Components & Materials Physics Research Center, Korea Electronics Technology Institute)
  • 한창운 (전자부품연구원 부품소재물리연구센터)
  • Received : 2013.09.08
  • Accepted : 2013.10.21
  • Published : 2014.01.01

Abstract

A vibration test coupon is prepared with nine plastic ball grid array packages on a printed circuit board using SnPb solders, and a random vibration test is conducted on the coupon. Life data from the test are analyzed, and it is shown that over the board, life data is location-dependent. For investigating this location dependency, a finite element model is developed and the equivalent stresses, which are defined based on the stress response functions at each node, are investigated. It is shown that one of the corner solder balls has the maximum equivalent stress at a package during the test. Finally, it is demonstrated that the maximum equivalent stress and durability life are inversely proportional.

인쇄회로기판 위에 9개의 PBGA (Plastic Ball Grid Array) 패키지를 SnPb 솔더로 실장하여 진동시편을 제작하고 랜덤진동시험을 수행하였다. 진동에 대한 각 패키지 솔더의 내구수명을 분석한 결과, 패키지의 인쇄회로기판 배치 위치에 따라 솔더의 내구수명이 결정됨을 보였다. 이 위치에 따른 내구수명 의존성을 규명하기 위하여 유한요소모델을 작성하고, 모델의 모든 요소에 대해서 응력응답함수로부터 정의되는 등가응력을 분석하였다. 분석결과로부터 랜덤진동시험에서 패키지를 연결하는 솔더 중 코너에 위치한 솔더에서 최대 등가응력이 발생함을 보였다. 마지막으로, 각 패키지별 코너 솔더의 최대 등가응력값을 파괴등가응력으로 정의하고 파괴등가응력과 각 패키지의 내구수명간에 직접적인 연관관계가 있음을 제시하였다.

Keywords

References

  1. Wong, T., Reed, B., Cohen, H. and Chu, D., 1999, "Development of BGA Solder Joint Vibration Fatigue Life Prediction Model," Proc. 1999 Electronic Components and Technology Conference, pp. 149-154.
  2. Gu, J., Barker, D. and Pecht, M., 2007, "Prognostics Implementation of Electronics Under Vibration Loading," Microelectronics Reliability, Vol. 47, No. 12, pp. 1849-1856. https://doi.org/10.1016/j.microrel.2007.02.015
  3. Liu, X., Sooklal, V., Verges, M. and Larson, M., 2006, "Experimental Study and Life Prediction on High Cycle Vibration Fatigue in BGA Packages," Microelectronics Reliability, Vol. 46, No. 7, pp. 1128-1138. https://doi.org/10.1016/j.microrel.2005.09.011
  4. Wong, S., Malatkar, P., Rick, C., Kulkarni, V. and Chin, I., 2007, "Vibration Testing and Analysis of Ball Grid Array Package Solder Joints," Proc. 2007 Electronic Components and Technology Conference, pp. 373-380.
  5. Yu, D., Al-Yafawi, A., Nguyen, T., Park, S., and Chung, S., 2011, "High-Cycle Fatigue Life Prediction for Pb-Free BGA Under Random Vibration Loading," Microelectronics Reliability, Vol. 51, No. 3, pp. 649-656. https://doi.org/10.1016/j.microrel.2010.10.003
  6. IPC, 1992, IPC-SM-785 Guidelines for Accelerated Reliability Testing of Surface Mount Attachments
  7. IEC, 1993, IEC 60068-2-64 Environmental Testing Part 2 : Test Methods Test Fh: Vibration, Broad-Band Random (Digital Control) and Guidance.
  8. Kumar, S. M., 2008, "Analyzing Random Vibration Fatigue," ANSYS Advantage, Vol. 2, No. 3, pp. 39-42.
  9. Han, C.-W., Oh, C., Hong, W., 2012, "Prognostics Model Development of BGA Assembly Under Vibration Environment," IEEE Trans. Comp. Pack. Manu. Tech., Vol. 2, No. 8, pp. 1329-1334. https://doi.org/10.1109/TCPMT.2012.2190141
  10. Ma, H. and Suhling, J. C., 2009, "A Review of Mechanical Properties of Lead-free Solders for Electronic Packaging," J. Mater. Sci., Vol. 44, No. 5, pp. 1141-1158. https://doi.org/10.1007/s10853-008-3125-9
  11. Grieu, M., Massiot, G., Maire, O., Chaillot, A., Munier, C., Bienvenu, Y. and Renard, J., 2008, "Durability Modeling of a BGA Component Under Random Vibration," Proc. 9th Int. Conf. on Thermal, Mechanical and Multiphysics Simulation and Experiment in Micro-Electronics and Micro-Systems, pp. 1-8.
  12. www.matweb.com