DOI QR코드

DOI QR Code

파프리카에 발생하는 주요 병원균에 대한 길항미생물, Serratia marcescens-YJK1, 분리와 특성

The Isolation and Characterization of the Antagonistic Microorganisms, Serratia marcescens-YJK1, for Major Pathogens on Paprika

  • 양수정 (전북대학교 농생물학과) ;
  • 김형무 (전북대학교 농생물학과 식물의학연구센터) ;
  • 주호종 (전북대학교 농생물학과 식물의학연구센터)
  • 투고 : 2014.11.10
  • 심사 : 2014.11.15
  • 발행 : 2014.12.31

초록

파프리카에 발생하는 병들을 방제하기 위하여 합성농약이 광범위하게 사용되어왔지만 최근에 수많은 농약사용의 부작용에 대한 관심이 증가 하고 있다. 파프리카 주요병인 잿빛곰팡이병, 줄기 및 과실썩음병, 역병, 균핵병, 시들음병을 방제하기 위한 미생물을 분리하고 특성을 파악하기 위하여 본 연구를 실시하였다. 지방산분석과 16S rDNA 염기배열은 이 연구에서 분리한 YKJ1가 Serratia marcescens 그룹에 속하는 것을 밝혔다. 특히, YKJ1의 16S rDNA 염기배열은 S. marcescens의 염기서열과 99% 상동성을 보였다. 광학현미경을 통해 YKJ1처리에 의해 병원균의 포자 발아 및 균사 생장이 저해됨을 확인 하였다. YKJ1처리는 팽윤균사와 같은 현저한 형태적 변화와 세포벽의 분해를 유발하였다. 역병균의 경우 유주자낭의 형성이 억제되었다. 본 연구에서 동정한 S. marcescens는 S. marcescens-YKJ1으로 부르고자 한다. 포장실험등과 같은 시험이 차후 더 요구되어지나 파프리카의 주요 병관리를 위한 생물적 방제제의 하나로 가치가 있을 것으로 생각된다.

Synthetic agro-chemicals have been widely used to control diseases on paprika but these days negative attention has been increasing to use of them because of several adverse effects. This research was conducted to isolate and to characterize the antagonistic microorganism to control major paprika diseases, gray mold rot, fruit and stem rot, phytophthora blight, sclerotium rot, and wilt disease. Analysis of the fatty acid and analysis of the 16S rDNA gene sequence revealed that YKJ1 isolated in this research belongs to a group of Serratia marcescens. Specially, 16S rDNA gene sequence of YKJ1 showed 99% of sequence similarity with S. marcescens. Observation through the optical microscope revealed that YKJ1 suppressed the spore germination and the hyphal growth of pathogens. YKJ1 treatment on pathogens induced marked morphological changes like hyphal swelling and degradation of cell wall. In the case of phytophthora blight, the zoosporangium formation was restrained. S. marcescens found in this study call as S. marcescens-YKJ1 and it may be valuable as one of biological control agents against major diseases of paprika in the future even though it is require to be tested with more study on field test.

키워드

참고문헌

  1. Adhikari, T. B., Joseph, C. M., Yang, G., Phillips, D. A., and Nelson, L. M. 2001. Evaluation of bacteria isolated from rice for plant growth promotion and biological control of seeding disease of rice. Can. J. Microbiol. 47: 916-924. https://doi.org/10.1139/w01-097
  2. Cha, S. D. 2009. Characterization of fungal pathogens isolated from greenhouse grown paprika plants and imported paprika seeds. Dankook University Master's thesis. p. 79.
  3. Cho, D. C. 2010. Pattern of Phytophthora blight occurrence in paprika grown in hydroponic system and application of sodium hypochlorite for its control. Gyeongsang National University, Master's thesis. p. 39.
  4. Chung, Y. S. 2011. Characteristics of gray mold on paprika (Capsicum annuum) caused by Botrytis cinerea and evaluation of biological control agent. Korea University Master's thesis. p. 54.
  5. Felsenstein, J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39: 783-791. https://doi.org/10.2307/2408678
  6. Gunji, S., K. Arima, and T. Beppu. 1983. Screening of antifungal antibiotics according to activities inducing morphological abnormalities. Agric. Biol. Chem. 47: 2061-2069. https://doi.org/10.1271/bbb1961.47.2061
  7. Jee, H. J., K. Y. Ryu, C. K. Shim, and K. W. Nam. 2005a. Occurrence of stem and fruit rot of paprika caused by Nectria haematococca. Plant Pathol. J. 21: 317-321. https://doi.org/10.5423/PPJ.2005.21.4.317
  8. Jee, H. J., C. K. Shim, K. Y. Ryu, and K. W. Nam. 2005b. Effect of fungicides on control of stem and root rot of paprika caused by Nectria haematococca. Res. Plant Dis. 11: 179-184. https://doi.org/10.5423/RPD.2005.11.2.179
  9. Jeon, Y. J., H. W. Kwon, J. S. Nam, and S. H. Kim. 2006. Characterization of Sclerotinia sclerotiorum isolated from paprika. Mycobiology 34: 154-157. https://doi.org/10.4489/MYCO.2006.34.3.154
  10. Kim, J. H., G. S. Choi, and J. K. Choi. 2002. Characterization of Cucumber mosaic virus subgroup II Isolated from paprika (Capsicum annuum var. grossum) in Korea. Plant Pathol. J. 18: 6-11. https://doi.org/10.5423/PPJ.2002.18.1.006
  11. Kim, K. Y. and S. D. Kim. 1997. Biological control of Pyricularia oryzae blast spot with the antibiotic substances produced by Bacillus sp. KL-3. Kor. J. Appl. Microbiol. Biotechnol. 25: 396-402.
  12. Kim, Y. K. 1995. Biological control of phytophthora blight of Redpepper by antagonistic bacillus polymyxa 'AC-1'. Seoul National University. Doctorate thesis. p. 78.
  13. Kim, Y. K. 2011. Trend of environment friendly agro material development on the plants of solanaceae (Pepper, Eggplant, Tomato). KIC News 14(4): 19-28.
  14. Kimura, M. 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111-120. https://doi.org/10.1007/BF01731581
  15. Lee, D. K. 2013. http://www.agrinet.co.kr/news/articleView.html?idxno=11787 1(Accessed Sep. 12. 2014).
  16. Lee, E. T. and S. D. Kim. 2000. Selection and antifungal activity of antagonistic bacterium Pseudomonas sp. 2112 against Red-Pepper Rotting Phytophthora capsici. Kor. J. Appl. Microbiol. Biotechnol. 28: 334-340.
  17. Lee, H. Y. 1994. Isolation and biological control of antagonistic microorganisms for sesame wilt. Daegu University Master's thesis. p. 47.
  18. Lee, J. M., H. S. Lim, T. H. Chang, and S. D. Kim. 1999. Isolation of siderophoreproducing Pseudomonas fluorescens GL7 and its biocontrol activity against root-rot disease for the development. Kor. J. Appl. Microbiol. Biotechnol. 27: 427-423.
  19. Lee, S. K. 2004. Diversity of rice endophytic bacteria and antagonistic effect. Chonbuk National University Doctorate thesis. p. 150.
  20. Lee, W. H., J. H. Kim, and I. Y. Choi. 2008. Advantages and disadvantages in using biological control of plant diseases and integrated control. J. Agricult. Life Sci. 39: 66-76.
  21. Li, B., R. Yu, B. Liu, Q. Tang, G. Zhang, Y. Wang, G. Xie, and G. Sun. 2011. Characterization and comparison of Serratia marcescens isolated from edible cactus and from silkworm for virulence potential and chitosan susceptibility. Braz. J. Microbiol. 42: 96-104. https://doi.org/10.1590/S1517-83822011000100013
  22. Lim, H. S. and S. D. Kim. 1997. Role of siderphores in biocontrol of Fusarium solani and enhanced growth response of bean by Pseudomonas fluorescens GL20. J. Microbiol. Biotechnol. 7: 13-20.
  23. Moussa, T. A. A. and M. A. Rizk. 2002. Biocontrol of sugarbeet pathogen Fusarium solani (Mart.) Sacc. by Streptomyces aureofaciens. Pakistan J. Biol. Sci. 5: 556-559. https://doi.org/10.3923/pjbs.2002.556.559
  24. Mehnaz, S., M. S. Mirza, J. Hanrat, R. Bally, P. Normand, A. Bano, and K. A. Malik. 2001. Isolation and 16S rRNA sequence analysis of the benefical bacteria from the rhizosphere of rice. Can. J. Microbiol. 47: 110-117. https://doi.org/10.1139/w00-132
  25. Mun, H. Y., M. R. Park, H. B. Lee, and K. H. Kim. 2008. Outbreak of Cucumber mosaic virus and Tomato spotted wilt virus on bell pepper grown in Jeonnam Province in Korea. Plant Pathol. J. 24: 93-96. https://doi.org/10.5423/PPJ.2008.24.1.093
  26. Nam, K. W. 2003. Ecology and management of main diseases of Sweet pepper in hydroponic culture. Kor. Res. Soc. Protected Hort. 16: 23-30.
  27. Nunes, C., J. Usall, N. Teixido, and I. Vinas. 2001. Biological control of postharvest pear diseases using a bacterium, Pantoea agglomerans CPA-2. Int. J. Food Microbiol. 70: 53-61. https://doi.org/10.1016/S0168-1605(01)00523-2
  28. Osterhout, G. J., V. H. Shull, and J. D. Dick. 1991. Identification of clinical isolates of gram-nagative non fermentative bacteria by an automated cellular fatty acid identification system. J. Cln. Microbiol. 29: 1822-1830.
  29. Reysenbach, A. L., L. J. Giver, G. S. Wickham, and N. R. Pace. 1992. Differential amplification of rDNA genes by polymerase chain reaction. Appl. Environ. Microbiol. 58: 3417-341.
  30. Sacchi, C. T., A. M. Whitney, L. W. Mayer, R. Morey, A. Steiferwalt, A. Boras, R. S. Weyant, and T. Popovie. 2002. Sequencing of 16S rRNA gene; A rapid tool for identification of Bacillus anthracis. Emerg. Infect. Dis. 8: 1117-1123. https://doi.org/10.3201/eid0810.020391
  31. Saitou, N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
  32. Sasser, M. 1990. Identification of bacteria by gas chromatography of cellular fatty acids. MIDI technical note 101. (MIDI, Inc. Newark, Del). pp. 1-7.
  33. Seong, K. Y. and P. G. Shin. 1996. Effect of siderophore on biological control of plant pathogens and promotion of plant growth by Pseudomonas fluorescens ps88. Agri. Chem. Biotechnol. 39: 20-24.
  34. Tamura K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA4: Molecular volutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599. https://doi.org/10.1093/molbev/msm092
  35. Walker, R., C. M. J. Innes, and E. J. Allan. 2001. The potential biocontrol agent Pseudomonas antimicrobica inhibits germination of conidia and outgrowth of Botrytis cinerea. Lett. Appl. Microbiol. 32: 346-348. https://doi.org/10.1046/j.1472-765X.2001.00915.x
  36. Yang, P., Bauterin, L., Bancaneyt, M., Swing, J. and Kersters, K. 1993. Application of fatty acid methyl esters for the taxonomic analysis of the genus Xanthomonas. Syst. Appl. Microbiol. 16: 47-71.
  37. Yoon, C. S., Ju, E. H., Yeoung, Y. R., and Kim, B. S. 2008. Survey of fungicide resistance for chemical control of Botrytis cinerea on paprika. Plant Pathol. J. 24: 447-452. https://doi.org/10.5423/PPJ.2008.24.4.447