The effective quality assurance for image guided device using the AMC G-Box

AMC G-Box를 이용한 영상유도장치의 효율적인 정도관리

  • Kim, Chong Mi (Department of Radiation Oncology, Asan Medical Center)
  • 김정미 (서울아산병원 방사선종양학과)
  • Received : 2014.09.30
  • Accepted : 2014.12.02
  • Published : 2014.12.30

Abstract

Purpose : According to the rapid increase recently in image-guided radiation therapy, It is necessary to control of the image guidance system completely. In particular for the main subject to the accuracy of image guided radiation therapy device to be done essentially the quality assurance. We made efficient phantom in AMC for the management of the accurate and efficient. Materials and Methods : By setting up of five very important as a quality assurance inventory of the Image guidance system, we made (AMC G-Box) phantom for quality assurance efficient and accurate. Quality assurance list were the Iso-center align, the real measurement, the center align of four direction, the accuracy of table movement and the reproducibility of Hounsfield Unit. The rectangular phantom; acrylic with a thickness of 1 cm to $10cm{\time}10cm{\time}10cm$ was inserted the three materials with different densities respectively for measure the CBCT HU. The phantom was to perform a check of consistency centered by creating a marker that indicates the position of the center fixed. By performing the quality assurance using the phantom of existing, comparing the resulting value to the different resulting value using the AMC G-Box, experiment was analyzed time and problems. Therapy equipment was used Varian device. It was measured twice at 1-week intervals. Results : When implemented quality assurance of an image guidance system using AMC G-Box and a phantom existing has been completed, the quality assurance result is similar in $0.2mm{\pm}0.1$. In the case of the conventional method, it was 45 minutes at 30 minutes. When using AMC G-Box, it takes 20 minutes 15 minutes, and declined to 50% of the time. Conclusion : The consistency and accurate of image guidance system tend to decline using device. Therefore, We need to perform thoroughly on the quality assurance related. It needs to be checked daily to consistency check especially. When using the AMC G-Box, It is possible to enhance the accuracy of the patient care and equipment efficiently performing accurate quality assurance.

목 적 : 최근 영상유도 방사선치료의 급증에 따라 영상유도장치의 정도관리를 철저히 시행할 필요가 있다. 특히 영상유도 방사선치료는 장치의 정확성을 기본 전제로 하기 때문에 이에 대한 정도관리가 필수적으로 행해져야 한다. 본원에서는 영상유도장치의 정도관리를 기존의 팬텀(Phantom)보다 효율적인 팬텀을 자체 제작하여 정확하고 효율적인 정도관리를 이행하고자 한다. 대상 및 방법 : 영상유도장치의 정도관리 항목으로 매우 중요한 5가지를 설정하고, 그 항목에 대하여 효율적이고 정확한 정도관리가 이루어 질 수 있는 팬텀(AMC G-Box)을 자체 제작하였다. 정도관리 항목은 Iso-center와 영상유도장치의 중심 일치성, 구현된 영상의 실측 정확성, 4 방향의 중심일치성, 영상유도 이동의 정확성 및 CBCT(Cone Beam CT)에서 구현된 HU(Hounsfield Unit)의 재현성으로 설정하였다. 이 항목에 대하여 $10cm{\time}10cm{\time}10cm$의 정사각형 팬텀을 1 cm두께의 아크릴로 제작하였으며 CBCT HU을 측정하기 위해 팬텀안에 각각 밀도가 다른 3개의 물질을 삽입하였다. 팬텀에는 중심과 일정한 위치를 가리키는 표식을 만들어서 중심과 일치성 검사를 할 수 있도록 하였다. 실험은 기존 각각의 팬텀을 이용한 정도관리를 실시하고, 새로 제작된 AMC G-Box로 실시한 후 그 결과 값을 비교하고 소요되는 시간과 문제점을 분석하였다. 사용된 치료기는 Varian사의 4개의 모델이고, 1주 간격으로 2회 측정하였다. 결 과 : 완성된 AMC G-Box를 이용한 영상유도장치의 정도관리를 시행하였을 때, 기존 개별로 구성된 팬텀을 이용한 정도관리 결과를 보았을 때, $0.2mm{\pm}0.1$이내에서 결과 값이 같았다. 또한 기존의 방법일 경우 최소 30분에서 45분이 소요되었으나, AMC G-Box를 이용하였을 때는 15분~20분이 소요되어 50%이상 시간을 감소하였다. 결 론 : 영상유도장치는 사용기간이 지남에 따라 일치성과 정확성이 떨어지는 경향이 있다. 따라서 관련된 정도관리를 주기적으로 철저하게 할 필요성이 있다. 특히 일치성 검사는 매일 점검해야하는 항목이다. 이러한 정도관리를 AMC G-Box를 이용할 경우 정확한 정도관리를 효율적으로 실시함으로써, 장치와 환자 치료의 안정성과 정확성을 높일 수 있었다.

Keywords

References

  1. Oldham M, L?tourneau D, Watt L, et al. Cone-beam-CT guided radiation therapy: a model for on-line application. Radiother Oncol 2005;75:271-8.
  2. Letourneau D, Martinez AA, Lockman D, et al. Assessment of residual error for online cone-beam CTguided treatment of prostate cancer patients. Int J RadiatOncol Biol Phys 2005;62:1239-46. https://doi.org/10.1016/j.ijrobp.2005.03.035
  3. Smitsmans MH, de Bois J, Sonke JJ, et al. Automatic prostate localization on cone-beam CT scans for high precision image-guided radiotherapy. Int J RadiatOncol Biol Phys 2005;63:975-84. https://doi.org/10.1016/j.ijrobp.2005.07.973
  4. Ling, C.C.; Yorke, E.; Fuks, Z. From IMRT to IGRT: Frontierland or neverland. Radiother. Oncol. 78:119-22; 2006. https://doi.org/10.1016/j.radonc.2005.12.005
  5. Jaffray DA, Drake DG, Moreau M, et al. A radiographic and tomographic imaging system integrated into a medical linear accelerator for localization of bone and soft-tissue targets. Int J Radiat Oncol Biol Phys 1999;45:773-89. https://doi.org/10.1016/S0360-3016(99)00118-2
  6. Siewerdsen JH, Jaffray DA. Cone-beam computed tomography with a flat-panel imager: effects of image lag. Med Phys 1999;26:2635-47. https://doi.org/10.1118/1.598803
  7. Siewerdsen, J.H.; Jaffray, D.A. Cone-beam computed tomography with a flat-panel imager: Magnitude and effects of x-ray scatter. Med. Phys. 28:220-31; 2001. https://doi.org/10.1118/1.1339879
  8. Jaffray DA, Drake DG, Moreau M, et al: A radiographic and tomographic imaging system integrated into a medical linear accelerator for localization of bone and soft-tissue targets. Int J Radiat Oncol Biol Phys 45:773-789, 1999 https://doi.org/10.1016/S0360-3016(99)00118-2
  9. Jaffray DA, Siewerdsen JH, Wong JW, et al: Flat-panel cone-beam computed tomography for image-guided radiation therapy. Int J Radiat Oncol Biol Phys 53:1337-1349, 2002 https://doi.org/10.1016/S0360-3016(02)02884-5
  10. Yin FF, Guan H, Lu W: A technique for on-board CT reconstruction using both kilovoltage and megavoltage beam projections for 3D treatment verification. Med Phys 32:2819-2826, 2005 https://doi.org/10.1118/1.1997307
  11. Wen, N.; Guan, H.; Hammoud, R.; et al. Dose delivered from Varian's CBCT to patients receiving IMRT for prostate cancer. Phys. Med. Biol. 52:2267-76; 2007. https://doi.org/10.1088/0031-9155/52/8/015
  12. Martin JM, Frantzis J, Eade T, Chung P. Clinician's guide to prostate IMRT plan assessment and optimisation. J Med Imaging Radiat Oncol 2010;54:569-75. https://doi.org/10.1111/j.1754-9485.2010.02217.x
  13. Nath R, Biggs PJ, Bova F, et al. AAPM code of practice for radiotherapy accelerators: Report of AAPM Radiation Therapy Task Group No. 45. Med Phys 1994;21:1093-1121. https://doi.org/10.1118/1.597398
  14. Fraass B, Doppke K, Hunt M, et al. American Association of Physicists in Medicine Radiation Therapy Committee Task Group 53: Quality assurance for clinical radiotherapy treatment planning. Med Phys 1998;25:1773-1829. https://doi.org/10.1118/1.598373
  15. Yoo S, Kim Jr GY, Hammoud R, et al. A quality assurance program for the onboard imager. Med Phys 2006;33:4431-47. https://doi.org/10.1118/1.2362872
  16. L?tourneau, D.; Keller, H.; Sharpe, M.B.; et al. Integral test phantom for dosimetric quality assurance of image guided and intensity modulated stereotactic radiotherapy.Med. Phys. 34:1842-9; 2007. https://doi.org/10.1118/1.2722471
  17. Bissonnette JP, Moseley DJ, Jaffray D. A quality assurance program for image quality of cone-beam CT guidance in radiation therapy. Med Phys 2008;35:1807-15. https://doi.org/10.1118/1.2900110
  18. Sykes JR, Lindsay R, Dean CJ, et al. Measurement of cone beam CT coincidence with megavoltage isocentre and image sharpness using the QUASARTM Penta-Guide pantom. Phys Med Biol 2008;53:5275-93. https://doi.org/10.1088/0031-9155/53/19/002
  19. Dawson LA, Sharpe MB. Image-guided radiotherapy: Rationale,benefits, and limitations. Lancet Oncol 2006;7:848-858. https://doi.org/10.1016/S1470-2045(06)70904-4
  20. Yan D. Developing quality assurance processes for image guided adaptive radiation therapy. Int J Radiat Oncol Biol Phys 2008;71(Suppl.):S28-S32. https://doi.org/10.1016/j.ijrobp.2007.08.082