유방전절제술을 시행한 환자에서 치료기법에 따른 피부선량 평가

Evaluation of superficial dose for Postmastectomy using several treatment techniques

  • 송용민 (삼성서울병원 방사선종양학과) ;
  • 최지민 (삼성서울병원 방사선종양학과) ;
  • 김진만 (삼성서울병원 방사선종양학과) ;
  • 권동열 (삼성서울병원 방사선종양학과) ;
  • 김종식 (삼성서울병원 방사선종양학과) ;
  • 조현상 (삼성서울병원 방사선종양학과) ;
  • 송기원 (삼성서울병원 방사선종양학과)
  • Song, Yong Min (Department of Radiation Oncology, Samsung Medical Center) ;
  • Choi, Ji Min (Department of Radiation Oncology, Samsung Medical Center) ;
  • Kim, Jin Man (Department of Radiation Oncology, Samsung Medical Center) ;
  • Kwon, Dong Yeol (Department of Radiation Oncology, Samsung Medical Center) ;
  • Kim, Jong Sik (Department of Radiation Oncology, Samsung Medical Center) ;
  • Cho, Hyun Sang (Department of Radiation Oncology, Samsung Medical Center) ;
  • Song, Ki Won (Department of Radiation Oncology, Samsung Medical Center)
  • 투고 : 2014.09.30
  • 심사 : 2014.12.02
  • 발행 : 2014.12.30

초록

목 적 : 방사선 치료 시 치료기법에 따라 피부에 흡수되는 선량은 달라진다. 본 연구에서는 유방전절제술을 시행한 환자의 방사선 치료 시 치료 기법에 따른 표면선량 및 깊이에 따른 피부선량을 평가하고자 한다. 대상 및 방법 : 조직등가물질로 구성된 팬톰(I'mRT, IBA)을 이용하여 전산화단층촬영을 시행 한 후 치료계획시스템에 의해 인체의 흉벽과 같이 가상의 표적과 정상조직을 설정하였다. 총 5가지의 치료계획(Wedged Tangential technique, 4-field IMRT, 7-field IMRT, TOMO DIRECT, TOMO HELICAL)에 대해 6MV 광자선을 이용해 최적의 치료계획을 수립하였다. 흉벽의 표면선량을 측정하기 위해 Gafchromic EBT3필름 이용하여 팬톰의 표면에 밀착 시킨 후 내측(0~4 cm), 중심측(4~12 cm), 외측(12~16 cm)으로 구분하여 분석 하였고, 깊이에 따른 피부선량을 측정하기 위해 팬톰 단면 사이에 필름을 삽입 후 측정하여 흉벽의 내측(3지점), 중심측(4지점), 외측(3지점)에 대해서 1~6 mm 깊이 별로 측정하여 분석하였다. 결 과 : 흉벽의 표면선량 측정결과 처방선량 기준으로 TOMO DIRECT에서 47~70%로 가장 높게 측정 되었으며, 7-field IMRT의 경우 35~46%로 가장 낮은 선량을 보였다. 깊이에 따른 피부선량 측정결과 TOMO DIRECT와 TOMO HELICAL에서 다른 치료기법에 비해 1 mm, 2 mm, 5 mm깊이에서 처방선량의 75%, 80%, 90% 이상으로 모든 영역에서 상대적으로 높은 선량이 측정 되었으며, 특히 TOMO DIRECT의 경우 접선인자 영향에 의해 중심 측의 1 mm, 2 mm깊이에서 처방선량의 80%, 90%이상의 선량이 측정 되었다. 결 론 : 유방전절제술을 시행한 환자의 방사선 치료 시 선형 가속기를 이용한 치료 기법에 비해 TOMO DIRECT와 TOMO HELICAL에서 표면 및 피부선량이 높게 나타났으며, 표면으로부터 1 mm깊이의 피부영역에서 75% 이상의 충분한 선량을 전달 할 수 있었다.

Purpose : The purpose of this study was to evaluate the surface and superficial dose for patients requiring postmastectomy radiation therapy(PMRT) with different treatment techniques. Materials and Methods : Computed tomography images were acquired for the phantom(I'mRT, IBA) consisting of tissue equivalent material. Hypothetical chestwall and lung were outlined and modified. Five treatment techniques(Wedged Tangential; WT, 4-field IMRT, 7-field IMRT, TOMO DIRECT, TOMO HELICAL) were evaluated using only 6MV photon beam. GafChromic EBT3 film was used for dose measurements at the surface and superficial dose. Surface dose profiles around the phantom were obtained for each treatment technique. For superficial dose measurements, film were used inside the phantom and analyzed superficial region for depth from 1-6mm. Results : TOMO DIRECT showed the highest surface dose by 47~70% of prescribed dose, while 7-field IMRT showed the lowest by 35~46% of prescribed dose. For the WT, 4-field IMRT and 7-field IMRT, superficial dose were measured over 60%, 70%, and 80% for 1mm, 2mm, and 5mm depth, respectively. In case of TOMO DIRECT and TOMO HELICAL, over 75%, 80%, and 90% of prescribed dose was measured, respectively. Surface and superficial dose range were uniform in overall chestwall for the 7-field IMRT and TOMO HELICAL. In contrast, Because of the dose enhancement effect with oblique incidence, The dose was gradually increased toward the obliquely tangential angle for the WT and TOMO DIRECT. Conclusion : For PMRT, TOMO DIRECT and TOMO HELICAL deliver the higher surface and superficial doses than treatment techniques based linear accelerator. It showed adequate dose(over 75% of prescribed dose) at 1mm depth in skin region.

키워드

참고문헌

  1. Whelan TJ, Julian J, Wright J, Jadad AR, Levine ML : Does locoregional radiation therapy improve survival in breast cancer A meta-analysis. Journal Clinical Oncology 2000;18:1220-1229 https://doi.org/10.1200/JCO.2000.18.6.1220
  2. Clarke M, Collins R, Darby S, et al. Collaborative Group (EBCTCG) : Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomised trials. Lancet 2005;366(9503):2087-2106. https://doi.org/10.1016/S0140-6736(05)67887-7
  3. ICRU. The biological basis for dose limitation in the skin. Oxford: Pergamon; 1992.
  4. Javedan K, Zhang G, Mueller R, Harris E, Berk L, Forster K : Skin dose study of chest wall treatment with tomotherapy. Japan Journal Radiology. 2009;27:355-362. https://doi.org/10.1007/s11604-009-0357-9
  5. Chao KSC, Perez CA, Brady LW. Breast: locally advanced (T3 and T4), inflammatory, and recurrent tumors. In: Chao KSC, Perez CA, Brady LW, eds. Radiation oncology management decisions. Philadelphia: Lippincott Williams & Wilkins. 2002;367-375.
  6. Uschold, G.M. Breast cancer. In: Charles M, Dennis T, eds. Principles and practice of radiation therapy. 2nd ed. St. Louis: C.V. Mosby. 2004;843-874.
  7. Vu TT, Pignol JP, Rakovitch E, et al. : Variability in radiation oncologists'opinion on the indication of a bolus in post-mastectomy radiotherapy: an international survey. Clinical Oncology 2007;19(2):115-119. https://doi.org/10.1016/j.clon.2006.10.004
  8. Bo Yang, Xian-ding Wei, Yu-tian Zhao, Chang-Ming Ma : Dosimetric evaluation of integrated IMRT treatment of the chestwall and supraclavicular region for breast cancer after modified radical mastectomy. Medical Dosimetry 2014;39:185-189 https://doi.org/10.1016/j.meddos.2013.12.008
  9. Krueger EA, Fraass BA, McShan DL, Marsh R, Pierce LJ : Potential gains for irradiation of chestwall and regional nodes with intensity modulated radiotherapy. International Journal of Radiation Oncology Biology Physics 2003.;56:1023-1037. https://doi.org/10.1016/S0360-3016(03)00183-4
  10. Tournel K, Verellen D, Duchateau M, et al. : An assessment of the use of skin flashes in helical tomotherapy using phantom and in-vivo dosimetry. Radiotherapy Oncology 2007;84:34-39. https://doi.org/10.1016/j.radonc.2007.06.003
  11. Smith KS, Gibbons JP, Gerbi BJ, Hogstrom KR : Measurement of superficial dose from a static tomotherapy beam. Medical Physics 2008;35:769-774. https://doi.org/10.1118/1.2828206
  12. Panettieri V, Barsoum P, Westermark M, Brualla L, Lax I : AAA and PBS calculation accuracy in the surface build-up region in tangential beam treatments. Phantom and breast case study with the Monte Carlo code PENELOPE. Radiotherapy Oncology 2009;93:94-101 https://doi.org/10.1016/j.radonc.2009.05.010
  13. A.C. Shiau, M.C. Chiu, T.H. Chen, et al : Surface and superficial dose dosimetric verification for postmastectomy radiotherapy. Medical Dosimetry 2012;37 :417-424 https://doi.org/10.1016/j.meddos.2012.03.005
  14. Hong L, Hunt M, Chui C, et al : Intensity modulated tangential beam irradiation of the intact breast. International Journal of Radiation Oncology Biology Physics 1999;44:1155-1164 https://doi.org/10.1016/S0360-3016(99)00132-7
  15. Fuss M, Sturtewagen E, De Wagter C, Georg D : Dosimetric characterization of GafChromic EBT film and its implication on film dosimetry quality assurance. Physics in Medicine and Biology 2007;21:4211-4225
  16. Quach KY, Morales J, Butson MJ, Rosenfeld AB, Metcalfe PE : Measurement of radiotherapy X-ray skin dose on a chest wall phantom. Medical Physics 2000;27:1676-1680. https://doi.org/10.1118/1.599035
  17. Akino Y, Das IJ, Bartlett GK, Zhang H, Thompson E, Zook JE : Evaluation of superficial dosimetry between treatment planning system and measurement for several breast cancer treatment techniques. Medical Physics 2013;40:011714(1-6) https://doi.org/10.1118/1.4770285
  18. S. Almberg, T. Lindmo, and J. Frengen : Superficial doses in breast cancer radiotherapy using conventional and IMRT techniques : A film-based phantom study. Radiotherapy Oncology 2011;100:259-264 https://doi.org/10.1016/j.radonc.2011.05.021
  19. B.J Gerbi, A.S Meigooni, F.M. Khan : Dose buildup for obliquely incident photon beams. Medical Physics 1987;14:393-399. https://doi.org/10.1118/1.596055