Evaluating efficiency of Coaxial MLC VMAT plan for spine SBRT

Spine SBRT 치료시 Coaxial MLC VMAT plan의 유용성 평가

  • Son, Sang Jun (Department of Radiation Oncology, Seoul National University Hospital) ;
  • Mun, Jun Ki (Department of Radiation Oncology, Seoul National University Hospital) ;
  • Kim, Dae Ho (Department of Radiation Oncology, Seoul National University Hospital) ;
  • Yoo, Suk Hyun (Department of Radiation Oncology, Seoul National University Hospital)
  • 손상준 (서울대학교병원 방사선종양학과) ;
  • 문준기 (서울대학교병원 방사선종양학과) ;
  • 김대호 (서울대학교병원 방사선종양학과) ;
  • 유숙현 (서울대학교병원 방사선종양학과)
  • Received : 2014.11.14
  • Accepted : 2014.12.02
  • Published : 2014.12.30

Abstract

Purpose : The purpose of the study is to evaluate the efficiency of Coaxial MLC VMAT plan (Using $273^{\circ}$ and $350^{\circ}$ collimator angle) That the leaf motion direction aligned with axis of OAR (Organ at risk, It means spinal cord or cauda equine in this study.) compare to Universal MLC VMAT plan (using $30^{\circ}$ and $330^{\circ}$ collimator angle) for spine SBRT. Materials and Methods : The 10 cases of spine SBRT that treated with VMAT planned by Coaxial MLC and Varian TBX were enrolled. Those cases were planned by Eclipse (Ver. 10.0.42, Varian, USA), PRO3 (Progressive Resolution Optimizer 10.0.28) and AAA (Anisotropic Analytic Algorithm Ver. 10.0.28) with coplanar $360^{\circ}$ arcs and 10MV FFF (Flattening filter free). Each arc has $273^{\circ}$ and $350^{\circ}$ collimator angle, respectively. The Universal MLC VMAT plans are based on existing treatment plans. Those plans have the same parameters of existing treatment plans but collimator angle. To minimize the dose difference that shows up randomly on optimizing, all plans were optimized and calculated twice respectively. The calculation grid is 0.2 cm and all plans were normalized to the target V100%=90%. The indexes of evaluation are V10Gy, D0.03cc, Dmean of OAR (Organ at risk, It means spinal cord or cauda equine in this study.), H.I (Homogeneity index) of the target and total MU. All Coaxial VMAT plans were verified by gamma test with Mapcheck2 (Sun Nuclear Co., USA), Mapphan (Sun Nuclear Co., USA) and SNC patient (Sun Nuclear Co., USA Ver 6.1.2.18513). Results : The difference between the coaxial and the universal VMAT plans are follow. The coaxial VMAT plan is better in the V10Gy of OAR, Up to 4.1%, at least 0.4%, the average difference was 1.9% and In the D0.03cc of OAR, Up to 83.6 cGy, at least 2.2 cGy, the average difference was 33.3 cGy. In Dmean, Up to 34.8 cGy, at least -13.0 cGy, the average difference was 9.6 cGy that say the coaxial VMAT plans are better except few cases. H.I difference Up to 0.04, at least 0.01, the average difference was 0.02 and the difference of average total MU is 74.1 MU. The coaxial MLC VMAT plan is average 74.1 MU lesser then another. All IMRT verification gamma test results for the coaxial MLC VMAT plan passed over 90.0% at 1mm / 2%. Conclusion : Coaxial MLC VMAT treatment plan appeared to be favorable in most cases than the Universal MLC VMAT treatment planning. It is efficient in lowering the dose of the OAR V10Gy especially. As a result, the Coaxial MLC VMAT plan could be better than the Universal MLC VMAT plan in same MU.

목 적 : Spine SBRT 치료 시 보편적인 치료방법인 콜리메이터 각도 $30^{\circ}$$330^{\circ}$를 각각 사용한 2회전 치료계획 (이하 Universal MLC VMAT)과 MLC 운동 방향과 척수 또는 마미 (이하 OAR)의 장축을 일치시킨 콜리메이터 각도 $273^{\circ}$$350^{\circ}$를 사용한 2회전 치료계획 (이하 Coaxial MLC VMAT) 유용성을 비교, 평가하고자 한다. 대상 및 방법 : 본원에서 Varian TBX을 이용하여, Coaxial MLC VMAT 치료 계획으로 치료 받은 spine SBRT환자 10명을 대상으로 하였다. 전산화치료계획은 Eclipse (ver 10.0.42, Varian, USA), PRO3 (Progressive Resolution Optimizer 10.0.28), AAA (Anisotropic Analytic Algorithm Ver 10.0.28) 알고리즘을 이용하였다. 치료계획은 VMAT로 겐트리 회전반경이 각각 $360^{\circ}$인 두 개의 ARC, 10MV FFF (Flattening Filter Free)를 이용하여 수립하였고, 각 ARC는 콜리메이터 각도 $273^{\circ}$, $350^{\circ}$로 설정하였다. 기존 치료계획을 바탕으로 실험군인 Universal MLC VMAT 치료계획을 수립하였다. 콜리메이터 각도를 제외한 모든 조건은 동일하게 설정하였으며, 특히 최적화 (VMAT optimization) 과정에서 무작위하게 나타나는 선량차이를 최소화하기 위해 각각 2회의 최적화, 선량 계산 과정을 거쳤다. 계산 grid 는 0.2 cm, normalization은 타겟 $V_{100%}=90%$로 설정하였다. OAR의 선량 $V_{10Gy}$, $D_{0.03cc}$, Dmean, 타겟의 H.I (Homogeneity index) 그리고 각 치료 계획의 Total MU를 평가 지표로 설정하였고, Mapcheck2 (Sun Nuclear Co., USA) 와 Mapphan (Sun Nuclear Co., USA) 그리고 SNC patient (Sun Nuclear Co., USA Ver 6.1.2.18513) 를 이용하여 Coaxial MLC VMAT 계획의 임상 적용 가능 여부 확인을 위한 IMRT verification QA (gamma test)를 실시하였다. 결 과 : 두 치료계획을 비교한 결과 OAR의 $V_{10Gy}$차이는 최대 4.1%, 최소 0.4%, 평균 1.9%로, $D_{0.03cc}$ 는 최대 83.5 cGy, 최소 2.2 cGy, 평균 33.3 cGy로 Coaxial MLC VMAT plan 이 더 낮은 것으로 나타났다. Dmean 또한 최대 34.8 cGy, 최소 -13.0 cGy, 평균 9.6 cGy로 Coaxial MLC VMAT plan 이 낮은 것으로 나타났다. H.I. 는 최대 0.04, 최소 0.01로 Coaxial MLC VMAT plan 이 평균 0.02 낮은 것으로 나타났으며, Total MU의 평균값을 비교한 결과 Coaxial MLC VMAT plan 이 평균 74.1 MU 더 낮게 나타났다. Coaxial MLC VMAT plan에 대한 IMRT verification gamma test 결과는 1 mm / 2%, pass rate 90.0% 기준을 모두 통과하였다. 결 론 : Coaxial MLC VMAT 치료계획은 Universal MLC VMAT 치료계획에 비해 대부분의 평가지표에서 유리한 것으로 나타냈으며 특히 OAR의 선량 $V_{10Gy}$을 낮추는데 있어 탁월한 것으로 사료된다. 실험결과를 바탕으로 두 치료 계획을 비교해 볼 때, 같은 MU를 사용한다면 Coaxial MLC VMAT 치료계획이 Universal MLC VMAT 치료계획에 비해 효율적이라 사료된다.

Keywords

References

  1. Wright RL : Malignant tumors in the spinal extradural space : Results of surgical treatment. Ann Surgery, 157;227-231, 1963 https://doi.org/10.1097/00000658-196302000-00008
  2. Stephen I.Esses. Text book of spinal disorders. 2002;316-3
  3. Han JS, Kim KT, So JH, et al: Surgical Treatment for Metastatic Spinal Tumor. J of Korean Bone & Joint Tumor Soc. 2000;6:1-9
  4. Sahgal A, Larson DA, Chang EL. Stereotactic body radiosurgery for spinal metastases: a critical review. Int J Radiat Oncol Biol Phys. 2008;71:652-65. https://doi.org/10.1016/j.ijrobp.2008.02.060
  5. Benedict SH, Yenice KM, Followill D, et al: AAPM Radiation Therapy Committee Tack Group 101: Stereotactic body radiosurgery therapy. Med Phys 2010;37:4078-4101 https://doi.org/10.1118/1.3438081
  6. Matuszak MM, Yan D, Grills I, Martinez A: Clinical applications of volumetric modulated arc therapy. Int J Radiat Oncol Biol Phys 2010;77:608-611 https://doi.org/10.1016/j.ijrobp.2009.08.032
  7. Yin FF, Wangs Z, Yoo S, et al. Integration of conebeam CT in Stereotactic body radiosurgery therapy. Technol Cancer Res Treat 2008;7:133-139 https://doi.org/10.1177/153303460800700206
  8. Shiu AS, Chang EL, Ye JS, et al. Near simultaneous computed tomography Image-guided stereotactic spinal radiotherapy: An emerging paradigm for achieving true stereotaxy. Int J Radiat Oncol Biol Phys 2003;57:605-613 https://doi.org/10.1016/S0360-3016(03)00792-2
  9. Yin FF, Rye S, Ajlouni M, et al. Image-guided procedures for intensity-modulated spinal radiosurgery. Technical note. J Neurosurg 2004;101(Suppl 3):419-424
  10. Yin FF, Rye S, Ajlouni M, et al. A technique of intensity-modulated radiosurgery (IMRS) for spinal tumors. Med Phys 2002;29: 2815-2822 https://doi.org/10.1118/1.1521722
  11. Q. Jackie Wu, Sua Yoo, John P.Kirkpatrick, et al. Volumetric arc intensity-modulated therapy for spine body radiotherapy: somparicon with static intensitymodulated treatment. Int J Radiat Oncol Biol Phys 2009;75: 1576-1604
  12. Eugenio Vanetti, Giorgia Nicolini, et al. On the role of the optimization algorithm of $RapidArc^{(R)}$ volumetric modulated arc therapy on plan quality and efficiency : Medical Physics 2011;38(11): 5844-5846 https://doi.org/10.1118/1.3641866