DOI QR코드

DOI QR Code

Novel computational approaches characterizing knee physiotherapy

  • Kim, Wangdo (Univ Lisboa, Fac Motricidade Humana, CIPER, LBMF, SPERTLAB) ;
  • Veloso, Antonio P. (Univ Lisboa, Fac Motricidade Humana, CIPER, LBMF, SPERTLAB) ;
  • Araujo, Duarte (Univ Lisboa, Fac Motricidade Humana, CIPER, LBMF, SPERTLAB) ;
  • Kohles, Sean S. (Division of Biomaterials & Biomechanics, Department of Restorative Dentistry, Oregon Health & Science University)
  • Received : 2013.09.28
  • Accepted : 2013.11.19
  • Published : 2014.01.01

Abstract

A knee joint's longevity depends on the proper integration of structural components in an axial alignment. If just one of the components is abnormally off-axis, the biomechanical system fails, resulting in arthritis. The complexity of various failures in the knee joint has led orthopedic surgeons to select total knee replacement as a primary treatment. In many cases, this means sacrificing much of an other-wise normal joint. Here, we review novel computational approaches to describe knee physiotherapy by introducing a new dimension of foot loading to the knee axis alignment producing an improved functional status of the patient. New physiotherapeutic applications are then possible by aligning foot loading with the functional axis of the knee joint during the treatment of patients with osteoarthritis.

Keywords

References

  1. Chao EYS, Sim FH. Computer-aided preoperative planning in knee Oosteotomy. The Iowa Orthopaedic Journal.1995; 15(1): 4-18.
  2. Shah M, Spilker R, Koff MF, Lipman J. Patient specific three dimensional knee model. In: 2011 IEEE 37th Annual Northeast Bioengineering Conference (NEBEC 2011); 2011 April 1-3; Troy, NY; p.1-2.
  3. Garg A, Walker PS. Prediction of total knee motion using a three-dimensional computer-graphics model. Journal of Biomechanics. 1990; 23(1): 45-58. https://doi.org/10.1016/0021-9290(90)90368-D
  4. Martelli S, Ellis RE, Marcacci M, Zaffagnini S. Total knee arthroplasty kinematics: computer simulation and intraoperative evaluation. The Journal of Arthroplasty. 1998; 13(2): 145-155. https://doi.org/10.1016/S0883-5403(98)90092-4
  5. Delp SL, Anderson FC, Arnold AS, Loan P, Habib A, John CT, Guendelman E, Thelen DG. Opensim: open-source software to create and analyze dynamic simulations of movement. IEEE Transactions on Biomedical Engineering. 2007; 54(11): 1940-1950. https://doi.org/10.1109/TBME.2007.901024
  6. Gerus P, Sartori M, Besier TF, Fregly BJ, Delp SL, Banks S A, Pandy MG, D'lima DD, Lloyd DG. Subject-specific knee joint geometry improves predictions of medial tibiofemoral contact forces. Journal of Biomechanics. 2013; 46(16): 2778-2786 https://doi.org/10.1016/j.jbiomech.2013.09.005
  7. Steele JR, Basu A, Job A. A three-dimensional representation of an athletic female knee joint using magnetic resonance imaging. Medical Engineering and Physics. 1994; 16(5): 363-369. https://doi.org/10.1016/1350-4533(90)90002-P
  8. Neptune RR, Clark DJ, Kautz SA. Modular control of human walking: a simulation study. Journal of Biomechanics. 2009; 42(9): 1282-1287. https://doi.org/10.1016/j.jbiomech.2009.03.009
  9. Neptune RR, Mcgowan CP, Fiandt JM. The influence of muscle physiology and advanced technology on sports performance. Annual Review of Biomedical Engineering. 2009; 11: 81-107. https://doi.org/10.1146/annurev-bioeng-061008-124941
  10. Neptune RR, Mcgowan CP, Kautz SA. Forward dynamics simulations provide insight into muscle mechanical work during human locomotion. Exercise and Sport Sciences Review. 2009; 37(4): 203-210.
  11. Ting LH, Mckay JL. Neuromechanics of muscle synergies for posture and movement. Current Opinion in Neurobiology. 2007; 17(6): 622-628. https://doi.org/10.1016/j.conb.2008.01.002
  12. Todorov E. Optimality principles in sensorimotor control. Nature Neuroscience. 2004; 7(9): 907-915. https://doi.org/10.1038/nn1309
  13. Kim W, Veloso AP, Araujo D, Vleck V, Joao F. An informational framework to predict reaction of constraints using a reciprocally connected knee model. Computer Methods in Biomechanics and Biomedical Engineering. 2013; 1-12. DOI: 10.1080/10255842.2013.779682
  14. Kim W, Kim YH, Veloso AP, Kohles SS. Tracking knee joint functional axes through Tikhonov filtering and Plucker coordinates. Journal of Novel Physiotherapies. 2013; 4(1): 11732. DOI: 10.4172/2165-7025.S4-001
  15. Kim W, Espanha M, Veloso A, Araujo D, Joao F, Carrao L, Kohles SS. An informational algorithm as the basis for perception-action control of the instantaneous axes of the knee. Journal of Novel Physiotherapies. 2013; 3(127): 2.
  16. Kim W, Veloso A, Joao F, Kohles SS. Efferent copy and corollary discharge motor control behavior associated with a hopping activity. Journal of Novel Physiotherapies. 2013; 3(167): 2.
  17. Kim W, Joao F, Tan J, Mota P, Vleck V, Aguiar L, Veloso A. The natural shock absorption of the leg spring. Journal of Biomechanics. 2013; 46(1): 129-136. https://doi.org/10.1016/j.jbiomech.2012.10.041
  18. Gibson JJ. The ecological approach to visual perception. Psychology Press; 1986. 332 p.
  19. Kim W, Tan J, Veloso A, Vleck V, Voloshin AS. The natural frequency of the foot-surface cushion during the stance phase of running. Journal of Biomechanics. 2011; 44(4): 774-779. https://doi.org/10.1016/j.jbiomech.2010.10.041
  20. Reed ES. Issues in the Ecological Study of Learning. Hillsdale (NJ): Psychology Press; 1985. Chapter 13, An ecological Approach to the evolution of behavior; p. 357-386.
  21. Ball RS. A treatise on the theory of screws. Cambridge University Press; 1900. 544 p.
  22. Ball RS. A treatise on the theory of screws. Re-issue. Cambridge University Press; 1998. 544 p.
  23. Hunt KH. Kinematic geometry of mechanism. Oxford University Press; 1990. 465 p.
  24. Kim W, Kohles SS. A reciprocal connection factor for assessing knee-joint function. Computer Methods in Biomechanics and Biomedical Engineering. 2012; 15(9): 911-917. https://doi.org/10.1080/10255842.2011.566270
  25. Kim W, Veloso A, Araujo D, Machado M, Vleck V, Aguiar L, Cabral S, Vieira F. Haptic perception-action coupling manifold of effective golf swing. International Journal of Golf Science. 2013; 2(1): 10-32. https://doi.org/10.1123/ijgs.2.1.10
  26. Teu KK, Kim W, Fuss FK, Tan J. The analysis of golf swing as a kinematic chain using dual euler angle algorithm. Journal of Biomechanics. 2006; 39(7): 1227-1238. https://doi.org/10.1016/j.jbiomech.2005.03.013
  27. Turvey MT, Romaniak-Gross C, Isenhower RW, Arzamarski R, Harrison S, Carello C. Human odometer is gait-symmetry specific. Proceeding of the Royal Society B: Biological Sciences. 2009; 276(1677): 4309-4314. https://doi.org/10.1098/rspb.2009.1134
  28. Berkeley G. An essay towards a new theory of vision. Rockville (MD): Arc Manor; 2008. 92 p.
  29. Kim W, Veloso AP, Vleck VE, Andrade C, Kohles SS. The stationary configuration of the knee. Journal of the American Podiatric Medical Association. 2013; 103(2): 126-135. https://doi.org/10.7547/1030126
  30. Roberts TJ, Marsh RL, Weyand PG, Taylor CR. Muscular force in running turkeys: the economy of minimizing work. Science. 1997; 275(5303): 1113-1115. https://doi.org/10.1126/science.275.5303.1113
  31. Mobius A. Ueber die Zusammensetzung unendlich kleiner Drehungen. Journal fur die reine und angewandte Mathematik. 2009; 1838(18): 189-212.
  32. Jessop CM. A treatise on the line complex. Cornell University Press; 1903. 382 p.
  33. Plucker J, Klein F. Neue Geometrie des Raumes gegrundet auf die Betrachtung der geraden Linie als Raumelement. Erste-[Zweite] Abtheilung [Internet]. Ann Arbor (MI): University of Michigan Library; 1868 [cited 2005]. 378 p. Available from: http://name.umdl.umich.edu/ABN8081
  34. Dooner D, Seireg A. The kinematic geometry of gearing: a concurrent engineering approach. Wiley-Interscience; 1995. 472 p.
  35. Dooner DB. On the three laws of gearing. Journal of Mechanical Design. 2002; 124(4): 733-744. https://doi.org/10.1115/1.1518501
  36. Huang C, Ravani B, Kuo W. A geometric interpretation of finite screw systems using the bisecting linear line complex. Journal of Mechanical Design. 2008; 130(10): 102303. https://doi.org/10.1115/1.2965362
  37. Lipkin H, Duffy J. Hybrid twist and wrench control for a robotic manipulator. Journal of Mechanisms Transmissions and Automation in Design. 1988; 110(2): 138-144. https://doi.org/10.1115/1.3258918
  38. Coken AC, Gorgulu A. On Joachimsthal's theorems in semi-Euclidean spaces. Nonlinear Analysis: Theory, Methods and Applications. 2009; 70(11): 3932-3942. https://doi.org/10.1016/j.na.2008.08.003
  39. Helfet A. Anatomy and mechanics of movement of the knee joint. In: Disorders of the knee. Philadelphia (PA): J.B. Lippincott; 1974; p. 1-17.
  40. Fregly BJ, Besier TF, Lloyd DG, Delp SL, Banks SA, Pandy MG, D'lima DD. Grand challenge competition to predict in vivo knee loads. Journal of Orthopaedic Research. 2012; 30(4): 503-513. https://doi.org/10.1002/jor.22023
  41. Budzik JF, Le Thuc V, Demondion X, Morel M, Chechin D, Cotten A. In vivo MR tractography of thigh muscles using diffusion imaging: initial results. European Radiology. 2007; 17(12): 3079-3085. https://doi.org/10.1007/s00330-007-0713-z
  42. Georgopoulos AP, Kettner RE, Schwartz AB. Primate motor cortex and free arm movements to visual targets in three-dimensional space. II. coding of the direction of movement by a Neuronal Population. The Journal of Neuroscience. 1988; 8(8): 2928-2937.
  43. Fuller EA. Center of pressure and its theoretical relationship to foot pathology. Journal of the American Podiatric Medical Association. 1999; 89(6): 278-291. https://doi.org/10.7547/87507315-89-6-278
  44. Thelen DG, Anderson FC. Using computed muscle control to generate forward dynamic simulations of human walking from experimental data. Journal of Biomechanics. 2006; 39(6): 1107-1115. https://doi.org/10.1016/j.jbiomech.2005.02.010
  45. Sasaki K, Neptune RR. Individual muscle contributions to the axial knee joint contact force during normal walking. Journal of Biomechanics. 2010; 43(14): 2780-2784. https://doi.org/10.1016/j.jbiomech.2010.06.011
  46. Kugler PN, Turvey MT. Information, natural law, and the self-assembly of rhythmic movement. Lawrence Erlbaum Associates; 1987. 416 p.
  47. Winter DA. Biomechanics and motor control of human movement. 4thed. Wiley; 2009. 384 p.
  48. Lee U. A proposition for new vehicle dynamic performance index. Journal of Mechanical Science and Technology. 2009; 23(4): 889-893. https://doi.org/10.1007/s12206-009-0307-6
  49. Bernstein NA. The co-ordination and regulation of movements. Pergamon Press; 1967. 196 p.