참고문헌
- Ahemad, M. and Kilbret, M. 2014. Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. J. King Saud University - Science 26, 1-20.
- Babalola, O.O. 2010. Beneficial bacteria of agricultural importance. Biotechnol. Lett. 32, 1559-1570. https://doi.org/10.1007/s10529-010-0347-0
- Ball, D. 1964. Loss-on-ignition as an estimate of organic matter and organic carbon in non-calcareous soil. Soil Sci. 15, 84-92. https://doi.org/10.1111/j.1365-2389.1964.tb00247.x
- Baumann, P., Doudoroff, M., and Stanier, R. 1968. A study of the Moraxella group. II. Oxidative-negative species (genus Acinetobacter). J. Bacteriol. 96, 39-42.
- Bhawsar, S., Path, S., and Chopade, B. 2012. Biosynthesis pathways of IAA production in Acinetobacter haemolyticus. Agric. Sci. Dig. 32, 214-218.
- Bradford, M. 1976. Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
- Castro-Sowinski, S., Herschkovitz, Y., Okon, Y., and Jurkevitch, E. 2007. Effects of inoculation with plant growth-promoting rhizobacteria on resident rhizosphere microorganisms. FEMS Microbiol. Lett. 276, 1-11. https://doi.org/10.1111/j.1574-6968.2007.00878.x
- Chaiharn, M., Chunhaleuchanon, S., Kozo, A., and Lumyong, S. 2008. Screening of rhizobacteria for their plant growth promoting activities. KMITL Sci. Tech. J. 8, 18-23.
- Gulati, A., Vyas, P., and Rahi, P. 2009. Plant growth-promoting and rhizosphere-competent Acinetobacter rhizosphaerae strain BIHB723 from the cold deserts of the Himalayas. Curr. Microbiol. 58, 371-377. https://doi.org/10.1007/s00284-008-9339-x
- Huddedar, S., Shete, A., Tilekar, J., Gore, S., Dhavale, D., and Chopade, B. 2002. Isolation, characterization, and plasmid pUPI126-mediated indole-3-acetic acid production in Acinetobacter strains from rhizosphere of wheat. Appl. Biochem. Biotechnol. 102-103, 21-39. https://doi.org/10.1385/ABAB:102-103:1-6:021
- Indiragandhi, P., Anandham, R., and Madhaiyan, M. 2008. Characterization of plant growth-promoting traits of bacteria isolated from larval guts of diamondback moth Plutella xylostella (Lepidoptera: Plutellidae). Curr. Microiol. 56, 327-333. https://doi.org/10.1007/s00284-007-9086-4
- Kamilova, F., Kravchenko, L., Shapshnikov, A., Azarova, T., Makarova, N., and Lugtenberg, B. 2006. Organic acids, sugars, and L-tryptophane in exudates of vegetables growing on stonewool and their effects on activities of rhizosphere bacteria. Mol. Plant Microbe Interact. 19, 250-256. https://doi.org/10.1094/MPMI-19-0250
- Kang, S.M., Joo, G.J., Hamayun, M., Na, C.I., Shin, D.H., Kim, H.Y., Hong, J.K., and Lee, I.J. 2009. Gibberellin production and phosphate solubilization by newly isolated strain of Acinetobacter calcoaceticus and its effect on plant growth. Biotechnol. Lett. 31, 277-281. https://doi.org/10.1007/s10529-008-9867-2
- Karadeniz, A., Topcuoglu, S., and Inan, S. 2006. Auxin, gibberellin, cytokinin and abscisic acid production in some bacteria. World J. Microbiol. Biotechnol. 22, 1061-1064. https://doi.org/10.1007/s11274-005-4561-1
- Kim, W.J. and Song, H.G. 2012. Interactions between biosynthetic pathway and productivity of IAA in some rhizobacteria. Kor. J. Microbiol. 48, 1-7. https://doi.org/10.7845/kjm.2012.48.1.001
- Kravchenko, L., Azarova, T., Makarova, N., and Tikhonovich, I. 2004. The effect of tryptophan present in plant root exudates on the phytostimulating activity of rhizobacteria. Microbiology 73, 156-158. https://doi.org/10.1023/B:MICI.0000023982.76684.9d
- Kravchenko, L., Shapozhnikov, A., Makarova, N., Azarova, T., L'vova, K., Kostyuk, I., Lyapunova, O., Tikhonovich, I. 2011. Exometabolites of bread wheat and tomato affecting the plant-microbe interactions in the rhizosphere. Rus. J. Plant Physiol. 58, 936-940. https://doi.org/10.1134/S1021443711050128
- Lambrecht, M., Okon, Y., Broek, A., and Vanderleyden, J. 2000. Indole- 3-acetic acid: a reciprocal signalling molecule in bacteria-plant interactions. Trends Microbiol. 8, 298-300. https://doi.org/10.1016/S0966-842X(00)01732-7
- Leveau, J. and Lindow, S. 2005. Utilization of the plant hormone indole-3-acetic acid for growth by Pseudomonas putida strain 1290. Appl. Environ. Microbiol. 71, 2365-2371. https://doi.org/10.1128/AEM.71.5.2365-2371.2005
- Nemec, A., Musilek, M., Sedo, O., De Baere, T., Maixnerova, M., van der Reijden, T., Zdrahal, Z., Vaneechoutte, M., and Dijkshoorn, L. 2010 Acinetobacter bereziniae sp. nov. and Acinetobacter guillouiae sp. nov., to accommodate Acinetobacter genomic species 10 and 11, respectively. J. Syst. Evol. Microbiol. 60, 896-903. https://doi.org/10.1099/ijs.0.013656-0
- Patten, C. and Glick, B. 2002. Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl. Environ. Microbiol. 68, 3795-3801. https://doi.org/10.1128/AEM.68.8.3795-3801.2002
- Rokhbakhsh-Zamin, F., Sachdev, D., Kazemi-Pour, N., Engineer, A., Pardesi, K., Zinjarde, S., Dhakephalkar, P., and Chopade, B. 2011. Characterization of plant-growth-promoting traits of Acinetobacter species isolated from rhizosphere of Pennisetum glaucum. J. Microbiol. Biotechnol. 21, 556-566.
- Shi, Y., Lou, K., and Li, C. 2011. Growth promotion effects of the endophyte Acinetobacter johnsonii strain 3-1 on sugar beet. Symbiosis 54, 159-166. https://doi.org/10.1007/s13199-011-0139-x
- Spaepen, S., Vanderleyden, J., and Remans, R. 2007. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol. Rev. 31, 425-448. https://doi.org/10.1111/j.1574-6976.2007.00072.x
- Spaepen, S. and Vanderleyden, J. 2011. Auxin and plant-microbe interactions. Cold Spring Harb. Perspect. Biol. doi: 10.1101/ cshperspect.a001438.
- Vessey, J.K. 2003. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255, 571-586. https://doi.org/10.1023/A:1026037216893
피인용 문헌
- The use of Sprout as Precursor for the Production of Indole Acetic Acid by Selected Plant Growth Promoting Rhizobacteria Grown in the Fermentor vol.10, pp.4, 2016, https://doi.org/10.5454/mi.10.4.3
- Optimization of Indole-3-acetic Acid (IAA) Production by Bacillus megaterium BM5 vol.49, pp.5, 2016, https://doi.org/10.7745/KJSSF.2016.49.5.461
- Expression of Auxin Response Genes SlIAA1 and SlIAA9 in Solanum lycopersicum During Interaction with Acinetobacter guillouiae SW5 vol.25, pp.6, 2014, https://doi.org/10.4014/jmb.1408.08047
- 친환경 잔디관리를 위한 가축분퇴비 중 기능성미생물의 분리 및 선발 vol.6, pp.2, 2014, https://doi.org/10.5660/wts.2017.6.2.157
- 양송이배지로부터 분리한 Klebsiella michiganensis Jopap-1의 식물생장촉진효과 vol.16, pp.3, 2014, https://doi.org/10.14480/jm.2018.16.3.218
- 양송이배지로부터 분리한 Arthrobacter enclensis Yangsong-1의 식물생장촉진효과 vol.17, pp.1, 2014, https://doi.org/10.14480/jm.2019.17.1.12