DOI QR코드

DOI QR Code

Viability of Probiotics in Feed under High Temperature Conditions and Their Growth Inhibitory Effect on Contaminant Microbes

고온 조건에서 사료 내 생균제의 생존성 및 오염미생물의 생장 억제 효과

  • Kim, Gyeom-Heon (Department of Animal Science and Technology, Konkuk University) ;
  • Yi, Kwon-Jung (Department of Animal Science and Technology, Konkuk University) ;
  • Lee, Ah-Ran (Department of Animal Science and Technology, Konkuk University) ;
  • Jang, In-Hwan (R&D center, Bigbiogen Co., Ltd.) ;
  • Song, In-Geun (R&D center, Bigbiogen Co., Ltd.) ;
  • Kim, Dong-Woon (National Institute of Animal Science, RDA) ;
  • Kim, Soo-Ki (Department of Animal Science and Technology, Konkuk University)
  • Received : 2014.07.25
  • Accepted : 2014.10.14
  • Published : 2014.12.31

Abstract

The aim of this study was to investigate the effect of high temperature on the viability of probiotic organisms (Bacillus subtilis, Lactobacillus plantarum, and Saccharomyces cerevisiae) mixed with animal feed under controlled conditions by simulating a farm feed bin in the summer. Following inoculation of probiotics into the feed, the pH and probiotic viability were monitored during an 8-day incubation at room temperature. Sterile and non-sterile feeds displayed different patterns of pH changes, with increased pH in non-sterile feed at 2 days, but a pattern of decreasing pH at 4 days. The viabilities of S. cerevisiae and B. subtilis after mono/co-inoculation were maintained without substantial changes during the incubation, whereas L. plantarum viability tended to decline. In both non-sterile and sterile feeds, the probiotics were maintained or grew without any antagonistic effects. Probiotic viability was also tested upon a shift to high temperature ($60^{\circ}C$). There was no distinct change in pH between sterile and non-sterile feeds after the temperature shift. L. plantarum and S. cerevisiae could not survive at the high temperature, whereas B. subtilis displayed normal growth, and it inhibited the growth of contaminant microbes. Fungal growth was not observed in non-sterile feed 2 days after supplementation with B. subtilis. Therefore, heat resistant B. subtilis could be safely used in feed bins to inhibit microbial contamination, even at high temperatures. The prevention of elevated temperature in feed bins is necessary for the utilization of L. plantarum and S. cerevisiae during the summer season.

여름철의 고온으로의 온도 상승에 따른 사료빈 내의 생균제 L. plantarum, S. cerevisiae 및 B. subtilis의 생존성을 실험실의 가상 조건에서 분석하였다. 상온인 $25^{\circ}C$에서 멸균 사료와 비멸균 사료에 단일 혹은 혼합 균주 첨가 시 pH 변화와 생균제들의 생장을 상호 비교하였다. pH는 멸균 사료와 비멸균 사료 모두에서 4일째에 가장 감소한 것은 같았으나 비멸균 사료에서는 2일째까지는 상승하는 변화의 양상을 보여주었다. 멸균 여부 혹은 혼합 여부와 관계없이 S. cerevisiae와 B. subtilis의 생균수는 일정하게 유지되었지만 L. plantarum의 경우에는 그 수가 모두 줄어드는 것을 확인할 수 있었다. 따라서 3종의 혼합 생균제는 상호 길항작용은 없는 것으로 나타났다. 멸균 및 비멸균 사료에 생균제를 첨가한 후 $60^{\circ}C$의 고온 환경에서 사료의 pH 와 단일접종 생균제의 생존성을 조사하였다. 멸균 및 비멸균 사료 사이에 뚜렷한 pH의 변화는 관찰되지 않았으며 B. subtilis의 pH가 가장 낮게 관찰되었다. 고온 하에서 L. plantarum과 S. cerevisiae 균주는 생존할 수 없었으며, 내열성을 가진 B. subtilis 균주는 생존하면서 사료에 자연적으로 생존하는 오염세균의 증식을 억제하였다. 또 B. subtilis를 접종한 비멸균 사료에서 2일째부터 오염 곰팡이가 관찰되지 않았다. 따라서 내열성이 강한 B. subtilis 균주를 사용하면, 여름철 사료빈 내에 병원성 세균과 곰팡이의 오염을 억제할 수 있는 것으로 나타났다.

Keywords

References

  1. Beharka, A.A. and Nagaraja, T.G. 1998. Effect of Aspergillus oryzae extract alone or in combination with antimicrobial compounds on ruminal bacteria. J. Dairy Sci. 81, 1591-1598. https://doi.org/10.3168/jds.S0022-0302(98)75725-X
  2. Bhasme, P.C., Kurjogi, M.M., Sanakal, R.D., Kaliwal, R.B., and Kaliwal, B.B. 2013. In silico characterization of putative drug targets in Staphylococcus saprophyticus, causing bovine mastitis. Bioinformation 9, 339-344. https://doi.org/10.6026/97320630009339
  3. Buenrostro, J.L. and Kratzer, F.H. 1983. Effect of Lactobacillus inoculation and antibiotic feeding of chickens on availability of dietary biotin. Poult. Sci. 62, 2022-2029. https://doi.org/10.3382/ps.0622022
  4. Coutinho, T.A. and Venter, S.N. 2009. Pantoea ananatis: an unconventional plant pathogen. Mol. Plant Pathol. 10, 325-335. https://doi.org/10.1111/j.1364-3703.2009.00542.x
  5. Crump, J.A., Griffin, P.M., and Angulo, F.J. 2002. Bacterial contamination of animal feed and its relationship to human foodborne illness. Clin. Infect. Dis. 35, 859-865. https://doi.org/10.1086/342885
  6. Cui, C., Shen, C.J., Jia, G., and Wang, K.N. 2013. Effect of dietary Bacillus subtilis on proportion of bacteroidetes and firmicutes in swine intestine and lipid metabolism. Genet. Mol. Res. 12, 1766-1776. https://doi.org/10.4238/2013.May.23.1
  7. Davis, M.E., Parrott, T., Brown, D.C., De Rodas, B.Z., Johnson, Z.B., Maxwell, C.V., and Rehberger, T. 2008. Effect of a Bacillus-based direct-fed microbial feed supplement on growth performance and pen cleaning characteristics of growing-finishing pigs. J. Anim. Sci. 86, 1459-1467. https://doi.org/10.2527/jas.2007-0603
  8. De-Bashan, L.E., Hernandez, J.P., Bashan, Y., and Maier, R.M. 2010. Bacillus pumilus ES4: Candidate plant growth-promoting bacterium to enhance establishment of plants in mine tailings. Environ. Exp. Bot. 69, 343-352. https://doi.org/10.1016/j.envexpbot.2010.04.014
  9. Desnoyers, M., Giger-Reverdin, S., Bertin, G., Duvaux-Ponter, C., and Sauvant, D. 2009. Meta-analysis of the influence of Saccharomyces cerevisiae supplementation on ruminal parameters and milk production of ruminants. J. Dairy Sci. 92, 1620-1632. https://doi.org/10.3168/jds.2008-1414
  10. Folic, M., Jankovic, S., Ruzic-Zecevic, D., Pajevic, V., Rosic, N., and Nikolic, P. 2010. Synovitis and periarticular bursitis of the coxofemoral joint caused by Kocuria Kristinae: A case report. Acta. Fac. Med. Naiss. 27, 51-54.
  11. Jang, Y.D., Oh, H.K., Piao, L.G., Choi, H.B., Yun, J.H., and Kim, Y.Y. 2009. Evaluation of probiotics as an alternative to antibiotic on growth performance, nutrient digestibility, occurrence of diarrhea and immune response in weaning pigs. J. Anim. Sci. Tech.(Kor.) 51, 25-32. https://doi.org/10.5187/JAST.2009.51.1.025
  12. Kim, Y.S., Cho, S.H., Jeong, D.Y., and Uhm, T.B. 2012. Isolation of biogenic amines-degrading strains of Bacillus subtilis and Bacillus amyloliquefaciens from traditionally fermented soybean products. Kor. J. Microbiol. 48, 220-224. https://doi.org/10.7845/kjm.2012.042
  13. Kim, S.I., Kim, I.C., and Chang, H.C. 1999. Isolation and identification of antimicrobial agent producing microorganisms and sensitive strain from soil. J. Korean Soc. Food Sci. Nutr. 28, 526-533.
  14. Kim, D.W., Kim, J.H., Kang, G.H., Kang, H.K., Lee, S.J., Lee, W.J., and Kim, S.H. 2008a. Study on intestinal viability and optimum feeding method of Lactobacillus in broiler chickens. J. Anim. Sci. Tech.(Kor.) 50, 807-818. https://doi.org/10.5187/JAST.2008.50.6.807
  15. Kim, S.H., Kim, D.W., Park, S.Y., Kim, J.H., Kang, G.H., Kang, H.K., Yu, D.J., Na, J.C., and Lee, S.J. 2008b. Effect of dietary Lactobacillus on growth performance, intestinal microflora, development of ileal villi, and intestinal mucosa in broiler chickens. J. Anim. Sci. Tech.(Kor.) 50, 667-676. https://doi.org/10.5187/JAST.2008.50.5.667
  16. Knap, I., Kehlet, A.B., Bennedsin, M., Mathis, G.F., Hofacre, C.L., Lumpkins, B.S., Jensen, M.M., Raun, M., and Lay, A. 2011. Bacillus subtilis (DSM17299) significantly reduces Salmonella in broilers. Poult. Sci. 90, 1690-1694. https://doi.org/10.3382/ps.2010-01056
  17. Krehbiel, C.R., Rust, S.R., Zhang, G., and Gilliland, S.E. 2003. Bacterial direct-fed microbials in ruminant diets: Performance response and mode of action. J. Anim. Sci. 81(E.Suppl.2), E120-132.
  18. Lee, E.J., Kim, J.S., Oh, S.W., and Kim, Y.J. 2012. The resistance of Bacillus subtilis in Makgeolli to hydrostatic pressure. Korean J. Food Sci. Technol. 44, 312-316. https://doi.org/10.9721/KJFST.2012.44.3.312
  19. Lessard, M., Dupuis, M., Gagnon, N., Nadeau, E., Matte, J.J., Goulet, J., and Fairbrother, J.M. 2009. Administration of Pediococcus acidilactici or Saccharomyces cerevisiae boulardii modulates development of porcine mucosal immunity and reduces intestinal bacterial translocation after Escherichia coli challenge. J. Anim. Sci. 87, 922-934. https://doi.org/10.2527/jas.2008-0919
  20. Ma, E.S., Wong, C.L., Lai, K.T., Chan, E.C., Yam, W.C., and Chan, A.C. 2005. Kocuria kristinae infection associated with acute cholecystitis. BMC. Infect. Dis. 5, 60. Marimuthu, K. 2013. Isolation and characterization of Staphylococcus hominis JX961712 from oil contaminated soil. J. Pharm. Res. 7, 252-256.
  21. Park, M.J., Kim, H.B., An, D.S., Yang, H.C., Oh, S.T., Chung, H.J., and Yang, D.C. 2007. Paenibacillus soli sp. nov., a xylanolytic bacterium isolated from soil. Int. J. Syst. Evol. Microbiol. 57, 146-150. https://doi.org/10.1099/ijs.0.64533-0
  22. Piao, X.S., Han, I.K., Kim, J.H., Cho, W.T., Kim, Y.H., and Liang, C. 1999. Effects of kemzyme, phytase and yeast supplementation on the growth performance and pollution reduction of broiler chicks. Asian J. Anim. Sci. 12, 36-41. https://doi.org/10.5713/ajas.1999.36
  23. Raz, R., Colodner, R., and Kunin, C.M. 2005. Who are you- Staphylococcus saprophyticus?. Clin. Infect. Dis. 40, 896-898. https://doi.org/10.1086/428353
  24. Ross, G.R., Gusils, C., Oliszewski, R., De Holgado, S.C., and Gonzalez, S.N. 2010. Effects of probiotic dministration in swine. J. Biosci. Bioeng. 109, 545-549. https://doi.org/10.1016/j.jbiosc.2009.11.007
  25. Salarmoini, M. and Fooladi, M.H. 2011. Efficacy of Lactobacillus acidophilus as probiotic to improve broiler chicks performance. J. Agr. Sci. Tech. 13, 165-172.
  26. Shon, M.Y., Seo, K.I., Park, S.K., Cho, Y.S., and Sung, N.J. 2001. Some biological activities and isoflavone content of Chungkugjang prepared with black beans and Bacillus strains. J. Korean Soc. Food Sci. Nutr. 30, 662-667.
  27. Swyers, K.L., Burk, A.O., Hartsock, T.G., Ungerfeld, E.M., and Shelton, J.L. 2008. Effects of direct-fed microbial supplementation on digestibility and fermentation end-products in horses fed low- and high-starch concentrates. J. Anim. Sci. 86, 2596-2608. https://doi.org/10.2527/jas.2007-0608
  28. Thomas, P. 2004. Isolation of Bacillus pumilus from in vitro grapes as a long‐term alcohol‐surviving and rhizogenesis inducing covert endophyte. J. Appl. Microbiol. 97, 114-123. https://doi.org/10.1111/j.1365-2672.2004.02279.x
  29. Vaseeharan, B. and Ramasamy, P. 2003. Control of pathogenic Vibrio spp. by Bacillus subtilis BT23, a possible probiotic treatment for black tiger shrimp Penaeus monodon. Lett. Appl. Microbiol. 36, 83-87. https://doi.org/10.1046/j.1472-765X.2003.01255.x
  30. Wu, W.J. and Ahn, B.Y. 2011. Isolation and identification of Bacillus amyloliquefaciens BY01 with high productivity of menaquinone for Cheonggukjang production. J. Korean Soc. Appl. Biol. Chem. 54, 783-789. https://doi.org/10.1007/BF03253160
  31. Zinniel, D.K., Lambrecht, P., Harris, N.B., Feng, Z., Kuczmarski, D., Higley, P., and Vidaver, A.K. 2002. Isolation and characterization of endophytic colonizing bacteria from agronomic crops and prairie plants. Appl. Environ. Microbiol. 68, 2198-2208. https://doi.org/10.1128/AEM.68.5.2198-2208.2002
  32. Zokaeifar, H., Balcazar, J.L., Saad, C.R., Kamarudin, M.S., Sijam, K., Arshad, A., and Nejat, N. 2012. Effect of Bacillus subtilis on the growth performance, digestive enzymes, immune gene expression and disease resistance of white shrimp, Litopenaeus vannamei. Fish Shellfish Immunol. 33, 683-689. https://doi.org/10.1016/j.fsi.2012.05.027

Cited by

  1. 사료자원에 서식하는 세균의 소화효소활성, 항생제내성 및 병원성에 관한 특성 vol.40, pp.2, 2014, https://doi.org/10.7853/kjvs.2017.40.2.119
  2. Survey and Microbiological Quality Control of Commercial Probiotics for Livestock in South Korea vol.53, pp.6, 2014, https://doi.org/10.14397/jals.2019.53.6.75
  3. Development of K-Berkshire Exclusive Feed Additive using Black Raspberry By-Products vol.53, pp.6, 2014, https://doi.org/10.14397/jals.2019.53.6.87