References
- Dey, R., Pal, K.K., Bhatt, D.M., and Chauhan, S.M. 2004. Growth promotion and yield enhancement of peanut (Arachis phygaea L.) by application of plant growth-promoting rhizobacteria. Microbiol. Res. 159, 371-394. https://doi.org/10.1016/j.micres.2004.08.004
- Dworkin, M. and Foster, J.W. 1958. Experiments with some microorganisms which utilize ethane and hydrogen. J. Bacteriol. 75, 592-603.
- de Freitas, J.R., Banerjee, M.R., and Germida, J.J. 1997. Phosphatesolubilizing rhizobacteria enhance the growth and yield but not phosphorus uptake of canola (Brassica napus L.). Biol. Fertil. Soils 24, 358-364. https://doi.org/10.1007/s003740050258
- Glick, B.R. 1995. The enhancement of plant growth by free-living bacteria. Can. J. Microbiol. 41, 109-117. https://doi.org/10.1139/m95-015
- Lee, G.W., Min, B.D., Park, S., Jheong, W., Go, E.B., Lee, K.J., and Chae, J.C. 2013. Biocontrol of red pepper using mixed culture of antagonistic bacterium and phosphate solubilizing yeast. Korean J. Microbiol. 49, 398-402. https://doi.org/10.7845/kjm.2013.3078
- Liu, L., Kloepper, J.W., and Tuzun, S. 1995. Induction of systemic resistance in cucumber by plant growth-promoting rhizobacteria: duration of protection and effect of host resistance on protection and root colonization. Phytopathology 85, 1064-1068. https://doi.org/10.1094/Phyto-85-1064
- MAFRA (Ministry of Agriculture, Food and Rural Affairs). 2002. Industrial development of environment-friendly bioremediating agents for the recovery of salt injury soil.
- Mayak, S., Tirosh, T., and Glick, B.R. 2004. Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol. Biochem. 42, 565-572. https://doi.org/10.1016/j.plaphy.2004.05.009
- Narsian, V. and Patel, H.H. 2000. Aspergillus aculeatus as a rock phosphate solubilizer. Soil Biol. Biochem. 32, 559-565. https://doi.org/10.1016/S0038-0717(99)00184-4
- Patten, C.L. and Glick, B.R. 2002. Role of Pseudomonas putida indol acetic acid in development of the host plant root system. Appl. Environ. Microbiol. 68, 3795-3801. https://doi.org/10.1128/AEM.68.8.3795-3801.2002
- Penrose, D.M. and Glick, B.R. 2003. Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiol. Plant 118, 10-15. https://doi.org/10.1034/j.1399-3054.2003.00086.x
- Rodriguez, H. and Fraga, R. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv. 17, 319-339. https://doi.org/10.1016/S0734-9750(99)00014-2
- Schwyn, B. and Neilands, J.B. 1987. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160, 47-56. https://doi.org/10.1016/0003-2697(87)90612-9
- Soh, B.Y., Lee, G.W., Go, E.B., Kim, B.R., Lee, K.J., and Chae, J.C. 2014. 1-Aminocyclopropane-1-carboxylate deaminase from Pseudomonas fluorescens promoting the growth of Chinese cabbage and its polyclonal antibody. J. Microbiol. Biotechnol. 24, 690-695. https://doi.org/10.4014/jmb.1401.01015
Cited by
- Promotive Effects of Geraniol on Radicle Growth of Several Vegetables and Leaf Growth of Brassica campestris vol.19, pp.4, 2015, https://doi.org/10.7585/kjps.2015.19.4.399
- Effect of Kluyvera sp. CL-2 on Sugar contents of Watermelon and Soil Chemical Properties vol.26, pp.4, 2018, https://doi.org/10.11625/KJOA.2018.26.4.677