DOI QR코드

DOI QR Code

Pathway Analysis of Metabolic Syndrome Using a Genome-Wide Association Study of Korea Associated Resource (KARE) Cohorts

  • Shim, Unjin (Department of Internal Medicine, Seoul Seonam Hospital, Ewha Womans University Medical Center) ;
  • Kim, Han-Na (Department of Biochemistry, Ewha Womans University School of Medicine) ;
  • Sung, Yeon-Ah (Department of Internal Medicine, Ewha Womans University School of Medicine) ;
  • Kim, Hyung-Lae (Department of Biochemistry, Ewha Womans University School of Medicine)
  • Received : 2014.07.07
  • Accepted : 2014.09.12
  • Published : 2014.12.31

Abstract

Metabolic syndrome (MetS) is a complex disorder related to insulin resistance, obesity, and inflammation. Genetic and environmental factors also contribute to the development of MetS, and through genome-wide association studies (GWASs), important susceptibility loci have been identified. However, GWASs focus more on individual single-nucleotide polymorphisms (SNPs), explaining only a small portion of genetic heritability. To overcome this limitation, pathway analyses are being applied to GWAS datasets. The aim of this study is to elucidate the biological pathways involved in the pathogenesis of MetS through pathway analysis. Cohort data from the Korea Associated Resource (KARE) was used for analysis, which include 8,842 individuals (age, $52.2{\pm}8.9years$ ; body mass index, $24.6{\pm}3.2kg/m^2$). A total of 312,121 autosomal SNPs were obtained after quality control. Pathway analysis was conducted using Meta-analysis Gene-Set Enrichment of Variant Associations (MAGENTA) to discover the biological pathways associated with MetS. In the discovery phase, SNPs from chromosome 12, including rs11066280, rs2074356, and rs12229654, were associated with MetS (p < $5{\times}10^{-6}$), and rs11066280 satisfied the Bonferroni-corrected cutoff (unadjusted p < $1.38{\times}10^{-7}$, Bonferroni-adjusted p < 0.05). Through pathway analysis, biological pathways, including electron carrier activity, signaling by platelet-derived growth factor (PDGF), the mitogen-activated protein kinase kinase kinase cascade, PDGF binding, peroxisome proliferator-activated receptor (PPAR) signaling, and DNA repair, were associated with MetS. Through pathway analysis of MetS, pathways related with PDGF, mitogen-activated protein kinase, and PPAR signaling, as well as nucleic acid binding, protein secretion, and DNA repair, were identified. Further studies will be needed to clarify the genetic pathogenesis leading to MetS.

Keywords

References

  1. de Carvalho Vidigal F, Bressan J, Babio N, Salas-Salvado J. Prevalence of metabolic syndrome in Brazilian adults: a systematic review. BMC Public Health 2013;13:1198. https://doi.org/10.1186/1471-2458-13-1198
  2. Marquez-Sandoval F, Macedo-Ojeda G, Viramontes-Hörner D, Fernandez Ballart JD, Salas Salvado J,Vizmanos B. The prevalence of metabolic syndrome in Latin America: a systematic review. Public Health Nutr 2011;14:1702-1713. https://doi.org/10.1017/S1368980010003320
  3. Aguilera CM, Olza J, Gil A. Genetic susceptibility to obesity and metabolic syndrome in childhood. Nutr Hosp 2013;28 Suppl 5:44-55.
  4. Hoang KC, Le TV, Wong ND. The metabolic syndrome in East Asians. J Cardiometab Syndr 2007;2:276-282. https://doi.org/10.1111/j.1559-4564.2007.07491.x
  5. Nestel P, Lyu R, Low LP, Sheu WH, Nitiyanant W, Saito I, et al. Metabolic syndrome: recent prevalence in East and Southeast Asian populations. Asia Pac J Clin Nutr 2007;16:362-367.
  6. Whitaker RC, Wright JA, Pepe MS, Seidel KD, Dietz WH. Predicting obesity in young adulthood from childhood and parental obesity. N Engl J Med 1997;337:869-873. https://doi.org/10.1056/NEJM199709253371301
  7. Whitaker RC. Predicting preschooler obesity at birth: the role of maternal obesity in early pregnancy. Pediatrics 2004;114:e29-e36. https://doi.org/10.1542/peds.114.1.e29
  8. Ristow M, Muller-Wieland D, Pfeiffer A, Krone W, Kahn CR. Obesity associated with a mutation in a genetic regulator of adipocyte differentiation. N Engl J Med 1998;339:953-959. https://doi.org/10.1056/NEJM199810013391403
  9. Peters KE, Beilby J, Cadby G, Warrington NM, Bruce DG, Davis WA, et al. A comprehensive investigation of variants in genes encoding adiponectin (ADIPOQ) and its receptors (ADIPOR1/R2), and their association with serum adiponectin, type 2 diabetes, insulin resistance and the metabolic syndrome. BMC Med Genet 2013;14:15.
  10. Joy T, Lahiry P, Pollex RL, Hegele RA. Genetics of metabolic syndrome. Curr Diab Rep 2008;8:141-148. https://doi.org/10.1007/s11892-008-0025-y
  11. Fall T, Ingelsson E. Genome-wide association studies of obesity and metabolic syndrome. Mol Cell Endocrinol 2014;382:740-757. https://doi.org/10.1016/j.mce.2012.08.018
  12. Vimaleswaran KS, Tachmazidou I, Zhao JH, Hirschhorn JN, Dudbridge F, Loos RJ. Candidate genes for obesity-susceptibility show enriched association within a large genome-wide association study for BMI. Hum Mol Genet 2012;21:4537-4542. https://doi.org/10.1093/hmg/dds283
  13. Kristiansson K, Perola M, Tikkanen E, Kettunen J, Surakka I, Havulinna AS, et al. Genome-wide screen for metabolic syndrome susceptibility loci reveals strong lipid gene contribution but no evidence for common genetic basis for clustering of metabolic syndrome traits. Circ Cardiovasc Genet 2012;5:242-249. https://doi.org/10.1161/CIRCGENETICS.111.961482
  14. Kim YJ, Go MJ, Hu C, Hong CB, Kim YK, Lee JY, et al. Large-scale genome-wide association studies in East Asians identify new genetic loci influencing metabolic traits. Nat Genet 2011;43:990-995. https://doi.org/10.1038/ng.939
  15. Lee BY, Shin DH, Cho S, Seo KS, Kim H. Genome-wide analysis of copy number variations reveals that aging processes influence body fat distribution in Korea Associated Resource (KARE) cohorts. Hum Genet 2012;131:1795-1804. https://doi.org/10.1007/s00439-012-1203-1
  16. Cho YS, Go MJ, Kim YJ, Heo JY, Oh JH, Ban HJ, et al. A large-scale genome-wide association study of Asian populations uncovers genetic factors influencing eight quantitative traits. Nat Genet 2009;41:527-534. https://doi.org/10.1038/ng.357
  17. Hirschhorn JN, Daly MJ. Genome-wide association studies for common diseases and complex traits. Nat Rev Genet 2005;6:95-108.
  18. de Bakker PI, Yelensky R, Pe'er I, Gabriel SB, Daly MJ, Altshuler D. Efficiency and power in genetic association studies. Nat Genet 2005;37:1217-1223. https://doi.org/10.1038/ng1669
  19. Cantor RM, Lange K, Sinsheimer JS. Prioritizing GWAS results: a review of statistical methods and recommendations for their application. Am J Hum Genet 2010;86:6-22. https://doi.org/10.1016/j.ajhg.2009.11.017
  20. Teo YY. Common statistical issues in genome-wide association studies: a review on power, data quality control, genotype calling and population structure. Curr Opin Lipidol 2008;19:133-143. https://doi.org/10.1097/MOL.0b013e3282f5dd77
  21. Stringer S, Wray NR, Kahn RS, Derks EM. Underestimated effect sizes in GWAS: fundamental limitations of single SNP analysis for dichotomous phenotypes. PLoS One 2011;6: e27964. https://doi.org/10.1371/journal.pone.0027964
  22. Zeggini E, Scott LJ, Saxena R, Voight BF, Marchini JL, Hu T, et al. Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat Genet 2008;40:638-645. https://doi.org/10.1038/ng.120
  23. Barrett JC, Hansoul S, Nicolae DL, Cho JH, Duerr RH, Rioux JD, et al. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn's disease. Nat Genet 2008;40:955-962. https://doi.org/10.1038/ng.175
  24. Ramanan VK, Shen L, Moore JH, Saykin AJ. Pathway analysis of genomic data: concepts, methods, and prospects for future development. Trends Genet 2012;28:323-332. https://doi.org/10.1016/j.tig.2012.03.004
  25. Wang K, Li M, Hakonarson H. Analysing biological pathways in genome-wide association studies. Nat Rev Genet 2010;11:843-854. https://doi.org/10.1038/nrg2884
  26. Shahbaba B, Shachaf CM, Yu Z. A pathway analysis method for genome-wide association studies. Stat Med 2012;31:988-1000. https://doi.org/10.1002/sim.4477
  27. Segre AV; DIAGRAM Consortium; MAGIC investigators, Groop L, Mootha VK, Daly MJ, et al. Common inherited variation in mitochondrial genes is not enriched for associations with type 2 diabetes or related glycemic traits. PLoS Genet 2010;6:e1001058. https://doi.org/10.1371/journal.pgen.1001058
  28. Morris AP, Voight BF, Teslovich TM, Ferreira T, Segre AV, Steinthorsdottir V, et al. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat Genet 2012;44:981-990. https://doi.org/10.1038/ng.2383
  29. Speliotes EK, Willer CJ, Berndt SI, Monda KL, Thorleifsson G, Jackson AU, et al. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat Genet 2010;42:937-948. https://doi.org/10.1038/ng.686
  30. National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation 2002;106:3143-3421.
  31. Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, et al. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation 2005;112:2735-2752. https://doi.org/10.1161/CIRCULATIONAHA.105.169404
  32. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007;81:559-575. https://doi.org/10.1086/519795
  33. Zhai G, Teumer A, Stolk L, Perry JR, Vandenput L, Coviello AD, et al. Eight common genetic variants associated with serum DHEAS levels suggest a key role in ageing mechanisms. PLoS Genet 2011;7:e1002025. https://doi.org/10.1371/journal.pgen.1002025
  34. Heo SG, Hwang JY, Uhmn S, Go MJ, Oh B, Lee JY, et al. Male-specific genetic effect on hypertension and metabolic disorders. Hum Genet 2014;133:311-319. https://doi.org/10.1007/s00439-013-1382-4
  35. Baik I, Cho NH, Kim SH, Han BG, Shin C. Genome-wide association studies identify genetic loci related to alcohol consumption in Korean men. Am J Clin Nutr 2011;93:809-816. https://doi.org/10.3945/ajcn.110.001776
  36. Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, Lindgren CM, et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 2007;316:889-894. https://doi.org/10.1126/science.1141634
  37. Kraja AT, Vaidya D, Pankow JS, Goodarzi MO, Assimes TL, Kullo IJ, et al. A bivariate genome-wide approach to metabolic syndrome: STAMPEED consortium. Diabetes 2011;60:1329-1339. https://doi.org/10.2337/db10-1011
  38. Avery CL, He Q, North KE, Ambite JL, Boerwinkle E, Fornage M, et al. A phenomics-based strategy identifies loci on APOC1, BRAP, and PLCG1 associated with metabolic syndrome phenotype domains. PLoS Genet 2011;7:e1002322. https://doi.org/10.1371/journal.pgen.1002322
  39. Ren J, Pulakat L, Whaley-Connell A, Sowers JR. Mitochondrial biogenesis in the metabolic syndrome and cardiovascular disease. J Mol Med (Berl) 2010;88:993-1001. https://doi.org/10.1007/s00109-010-0663-9
  40. Kim JA, Wei Y, Sowers JR. Role of mitochondrial dysfunction in insulin resistance. Circ Res 2008;102:401-414. https://doi.org/10.1161/CIRCRESAHA.107.165472
  41. Patti ME, Butte AJ, Crunkhorn S, Cusi K, Berria R, Kashyap S, et al. Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1. Proc Natl Acad Sci U S A 2003;100:8466-8471. https://doi.org/10.1073/pnas.1032913100
  42. Ritov VB, Menshikova EV, He J, Ferrell RE, Goodpaster BH, Kelley DE. Deficiency of subsarcolemmal mitochondria in obesity and type 2 diabetes. Diabetes 2005;54:8-14. https://doi.org/10.2337/diabetes.54.1.8
  43. Kelley DE, He J, Menshikova EV, Ritov VB. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes 2002;51:2944-2950. https://doi.org/10.2337/diabetes.51.10.2944
  44. Adams PL, Turnbull DM. Disorders of the electron transport chain. J Inherit Metab Dis 1996;19:463-469. https://doi.org/10.1007/BF01799107
  45. Choksi KB, Boylston WH, Rabek JP, Widger WR, Papaconstantinou J. Oxidatively damaged proteins of heart mitochondrial electron transport complexes. Biochim Biophys Acta 2004;1688:95-101. https://doi.org/10.1016/j.bbadis.2003.11.007
  46. Harper L, Kashiwagi Y, Pusey CD, Hendry BM, Domin J. Platelet-derived growth factor reorganizes the actin cytoskeleton through 3-phosphoinositide-dependent and 3-phosphoinositide- independent mechanisms in human mesangial cells. Nephron Physiol 2007;107:p45-p56. https://doi.org/10.1159/000107805
  47. Carmeliet P. Angiogenesis in health and disease. Nat Med 2003;9:653-660. https://doi.org/10.1038/nm0603-653
  48. Zymek P, Bujak M, Chatila K, Cieslak A, Thakker G, Entman ML, et al. The role of platelet-derived growth factor signaling in healing myocardial infarcts. J Am Coll Cardiol 2006;48:2315-2323. https://doi.org/10.1016/j.jacc.2006.07.060
  49. Fan B, Ma L, Li Q, Wang L, Zhou J, Wu J. Role of PDGFs/PDGFRs signaling pathway in myocardial fibrosis of DOCA/salt hypertensive rats. Int J Clin Exp Pathol 2014;7:16-27.
  50. Tisato V, Toffoli B, Monasta L, Bernardi S, Candido R, Zauli G, et al. Patients affected by metabolic syndrome show decreased levels of circulating platelet derived growth factor (PDGF)-BB. Clin Nutr 2013;32:259-264. https://doi.org/10.1016/j.clnu.2012.07.003
  51. Bessa SS, Hussein TA, Morad MA, Amer AM. Urinary platelet- derived growth factor-BB as an early marker of nephropathy in patients with type 2 diabetes: an Egyptian study. Ren Fail 2012;34:670-675. https://doi.org/10.3109/0886022X.2012.674438
  52. Murdolo G, Bartolini D, Tortoioli C, Piroddi M, Iuliano L, Galli F. Lipokines and oxysterols: novel adipose-derived lipid hormones linking adipose dysfunction and insulin resistance. Free Radic Biol Med 2013;65:811-820. https://doi.org/10.1016/j.freeradbiomed.2013.08.007
  53. Bost F, Aouadi M, Caron L, Binetruy B. The role of MAPKs in adipocyte differentiation and obesity. Biochimie 2005;87:51-56. https://doi.org/10.1016/j.biochi.2004.10.018
  54. Gehart H, Kumpf S, Ittner A, Ricci R. MAPK signalling in cellular metabolism: stress or wellness? EMBO Rep 2010;11:834-840. https://doi.org/10.1038/embor.2010.160
  55. Azhar S. Peroxisome proliferator-activated receptors, metabolic syndrome and cardiovascular disease. Future Cardiol 2010;6:657-691. https://doi.org/10.2217/fca.10.86
  56. Corzo C, Griffin PR. Targeting the peroxisome proliferatoractivated receptor-gamma to counter the inflammatory milieu in obesity. Diabetes Metab J 2013;37:395-403. https://doi.org/10.4093/dmj.2013.37.6.395
  57. Vänttinen M, Nuutila P, Kuulasmaa T, Pihlajamaki J, Hallsten K, Virtanen KA, et al. Single nucleotide polymorphisms in the peroxisome proliferator-activated receptor delta gene are associated with skeletal muscle glucose uptake. Diabetes 2005; 54:3587-3591. https://doi.org/10.2337/diabetes.54.12.3587
  58. Hu C, Jia W, Fang Q, Zhang R, Wang C, Lu J, et al. Peroxisome proliferator-activated receptor (PPAR) delta genetic polymorphism and its association with insulin resistance index and fasting plasma glucose concentrations in Chinese subjects. Diabet Med 2006;23:1307-1312. https://doi.org/10.1111/j.1464-5491.2006.02001.x
  59. Aberle J, Hopfer I, Beil FU, Seedorf U. Association of peroxisome proliferator-activated receptor delta +294T/C with body mass index and interaction with peroxisome proliferator- activated receptor alpha L162V. Int J Obes (Lond) 2006;30:1709-1713. https://doi.org/10.1038/sj.ijo.0803345
  60. Scott LJ, Mohlke KL, Bonnycastle LL, Willer CJ, Li Y, Duren WL, et al. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 2007;316:1341-1345. https://doi.org/10.1126/science.1142382
  61. Shin HD, Park BL, Kim LH, Jung HS, Cho YM, Moon MK, et al. Genetic polymorphisms in peroxisome proliferator-activated receptor delta associated with obesity. Diabetes 2004;53:847-851. https://doi.org/10.2337/diabetes.53.3.847
  62. Tang X, Tang G, Ozcan S. Role of microRNAs in diabetes. Biochim Biophys Acta 2008;1779:697-701. https://doi.org/10.1016/j.bbagrm.2008.06.010
  63. Poy MN, Spranger M, Stoffel M. microRNAs and the regulation of glucose and lipid metabolism. Diabetes Obes Metab 2007;9 Suppl 2:67-73. https://doi.org/10.1111/j.1463-1326.2007.00775.x
  64. Ramírez CM, Goedeke L, Fernandez-Hernando C. "Micromanaging" metabolic syndrome. Cell Cycle 2011;10:3249-3252. https://doi.org/10.4161/cc.10.19.17558
  65. Heneghan HM, Miller N, Kerin MJ. Role of microRNAs in obesity and the metabolic syndrome. Obes Rev 2010;11:354-361. https://doi.org/10.1111/j.1467-789X.2009.00659.x
  66. Esau C, Davis S, Murray SF, Yu XX, Pandey SK, Pear M, et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab 2006;3:87-98. https://doi.org/10.1016/j.cmet.2006.01.005
  67. Gharipour M, Sadeghi M. Pivotal role of microRNA-33 in metabolic syndrome: a systematic review. ARYA Atheroscler 2013;9:372-376.
  68. Wang PW, Lin TK, Weng SW, Liou CW. Mitochondrial DNA variants in the pathogenesis of type 2 diabetes - relevance of asian population studies. Rev Diabet Stud 2009;6:237-246. https://doi.org/10.1900/RDS.2009.6.237
  69. Mercer JR, Cheng KK, Figg N, Gorenne I, Mahmoudi M, Griffin J, et al. DNA damage links mitochondrial dysfunction to atherosclerosis and the metabolic syndrome. Circ Res 2010;107:1021-1031. https://doi.org/10.1161/CIRCRESAHA.110.218966
  70. Weng SW, Liou CW, Lin TK, Wei YH, Lee CF, Eng HL, et al. Association of mitochondrial deoxyribonucleic acid 16189 variant (T->C transition) with metabolic syndrome in Chinese adults. J Clin Endocrinol Metab 2005;90:5037-5040. https://doi.org/10.1210/jc.2005-0227
  71. Liou CW, Lin TK, Huei Weng H, Lee CF, Chen TL, Wei YH, et al. A common mitochondrial DNA variant and increased body mass index as associated factors for development of type 2 diabetes: additive effects of genetic and environmental factors. J Clin Endocrinol Metab 2007;92:235-239. https://doi.org/10.1210/jc.2006-0653
  72. Poulton J, Brown MS, Cooper A, Marchington DR, Phillips DI. A common mitochondrial DNA variant is associated with insulin resistance in adult life. Diabetologia 1998;41:54-58. https://doi.org/10.1007/s001250050866
  73. Blasiak J, Arabski M, Krupa R, Wozniak K, Zadrozny M, Kasznicki J, et al. DNA damage and repair in type 2 diabetes mellitus. Mutat Res 2004;554:297-304. https://doi.org/10.1016/j.mrfmmm.2004.05.011
  74. Cabre A, Lazaro I, Girona J, Manzanares JM, Marimon F, Plana N, et al. Fatty acid binding protein 4 is increased in metabolic syndrome and with thiazolidinedione treatment in diabetic patients. Atherosclerosis 2007;195:e150-e158. https://doi.org/10.1016/j.atherosclerosis.2007.04.045
  75. Cabre A, Lazaro I, Girona J, Manzanares JM, Marimon F, Plana N, et al. Plasma fatty acid-binding protein 4 increases with renal dysfunction in type 2 diabetic patients without microalbuminuria. Clin Chem 2008;54:181-187.
  76. Mahdi T, Hanzelmann S, Salehi A, Muhammed SJ, Reinbothe TM, Tang Y, et al. Secreted frizzled-related protein 4 reduces insulin secretion and is overexpressed in type 2 diabetes. Cell Metab 2012;16:625-633. https://doi.org/10.1016/j.cmet.2012.10.009
  77. Qi Q, Yu Z, Ye X, Zhao F, Huang P, Hu FB, et al. Elevated retinol- binding protein 4 levels are associated with metabolic syndrome in Chinese people. J Clin Endocrinol Metab 2007;92:4827-4834. https://doi.org/10.1210/jc.2007-1219
  78. Liu Y, Wang D, Li D, Sun R, Xia M. Associations of retinol-binding protein 4 with oxidative stress, inflammatory markers, and metabolic syndrome in a middle-aged and elderly Chinese population. Diabetol Metab Syndr 2014;6:25. https://doi.org/10.1186/1758-5996-6-25
  79. Zhang G, Beati H, Nilsson J, Wodarz A. The Drosophila microtubule- associated protein mars stabilizes mitotic spindles by crosslinking microtubules through its N-terminal region. PLoS One 2013;8:e60596. https://doi.org/10.1371/journal.pone.0060596
  80. Kelder T, Conklin BR, Evelo CT, Pico AR. Finding the right questions: exploratory pathway analysis to enhance biological discovery in large datasets. PLoS Biol 2010;8:e1000472. https://doi.org/10.1371/journal.pbio.1000472
  81. Khatri P, Sirota M, Butte AJ. Ten years of pathway analysis: current approaches and outstanding challenges. PLoS Comput Biol 2012;8:e1002375. https://doi.org/10.1371/journal.pcbi.1002375

Cited by

  1. Interactions of Environmental Factors and APOA1-APOC3-APOA4-APOA5 Gene Cluster Gene Polymorphisms with Metabolic Syndrome vol.11, pp.1, 2016, https://doi.org/10.1371/journal.pone.0147946
  2. Common dysregulated pathways in obese adipose tissue and atherosclerosis vol.15, pp.1, 2016, https://doi.org/10.1186/s12933-016-0441-2
  3. Genetic Variants Related to Cardiometabolic Traits Are Associated to B Cell Function, Insulin Resistance, and Diabetes Among AmeriCan Indians: The Strong Heart Family Study vol.9, pp.1664-8021, 2018, https://doi.org/10.3389/fgene.2018.00466