DOI QR코드

DOI QR Code

Enhanced Production of ${\varepsilon}$-Caprolactone by Coexpression of Bacterial Hemoglobin Gene in Recombinant Escherichia coli Expressing Cyclohexanone Monooxygenase Gene

  • Lee, Won-Heong (Department of Bioenergy Science and Technology, Chonnam National University) ;
  • Park, Eun-Hee (Department of Food Science and Biotechnology, Kangwon National University) ;
  • Kim, Myoung-Dong (Department of Food Science and Biotechnology, Kangwon National University)
  • Received : 2014.09.18
  • Accepted : 2014.09.29
  • Published : 2014.12.28

Abstract

Baeyer-Villiger (BV) oxidation of cyclohexanone to ${\varepsilon}$-caprolactone in a microbial system expressing cyclohexanone monooxygenase (CHMO) can be influenced by not only the efficient regeneration of NADPH but also a sufficient supply of oxygen. In this study, the bacterial hemoglobin gene from Vitreoscilla stercoraria (vhb) was introduced into the recombinant Escherichia coli expressing CHMO to investigate the effects of an oxygen-carrying protein on microbial BV oxidation of cyclohexanone. Coexpression of Vhb allowed the recombinant E. coli strain to produce a maximum ${\varepsilon}$-caprolactone concentration of 15.7 g/l in a fed-batch BV oxidation of cyclohexanone, which corresponded to a 43% improvement compared with the control strain expressing CHMO only under the same conditions.

Keywords

References

  1. Chien LJ, Lee CK. 2007. Enhanced hyaluronic acid production in Bacillus subtilis by coexpressing bacterial hemoglobin. Biotechnol. Prog. 23: 1017-1022.
  2. De Mey M, De Maeseneire S, Soetaert W, Vandamme E. 2007. Minimizing acetate formation in E. coli fermentations. J. Ind. Microbiol. Biotechnol. 34: 689-700. https://doi.org/10.1007/s10295-007-0244-2
  3. Doo EH, Lee WH, Seo HS, Seo JH, Park JB. 2009. Productivity of cyclohexanone oxidation of the recombinant Corynebacterium glutamicum expressing chnB of Acinetobacter calcoaceticus. J. Biotechnol. 142: 164-169. https://doi.org/10.1016/j.jbiotec.2009.04.008
  4. Drepper T, Eggert T, Hummel W, Leggewie C, Pohl M, Rosenau F, et al. 2006. Novel biocatalysts for white biotechnology. Biotechnol. J. 1: 777-786. https://doi.org/10.1002/biot.200600059
  5. Duetz WA, van Beilen JB, Witholt B. 2001. Using proteins in their natural environment: potential and limitations of microbial whole-cell hydroxylations in applied biocatalysis. Curr. Opin. Biotechnol. 12: 419-425. https://doi.org/10.1016/S0958-1669(00)00237-8
  6. Fery AD, Kallio PT. 2003. Bacterial hemoglobins and flavohemoglobins: versatile proteins and their impact on microbiology and biotechnology. FEMS Microbiol. Rev. 27: 525-545. https://doi.org/10.1016/S0168-6445(03)00056-1
  7. Gardner AM, Gardner PR. 2002. Flavohemoglobin detoxifies nitric oxide in aerobic, but not anaerobic, Escherichia coli. Evidence for a novel inducible anaerobic nitric oxidescavenging activity. J. Biol. Chem. 277: 8166-8171. https://doi.org/10.1074/jbc.M110470200
  8. Gardner PR, Gardner AM, Martin LA, Salzman AL. 1998. Nitric oxide dioxygenase: an enzymic function for flavohemoglobin. Proc. Natl. Acad. Sci. USA 95: 10378-10383. https://doi.org/10.1073/pnas.95.18.10378
  9. Hausladen A, Gow AJ, Stamler JS. 1998. Nitrosative stress: metabolic pathway involving the flavohemoglobin. Proc. Natl. Acad. Sci. USA 95: 14100-14105. https://doi.org/10.1073/pnas.95.24.14100
  10. Hilker I, Baldwin C, Alphand V, Furstoss R, Woodley J, Wohlgemuth R. 2006. On the influence of oxygen and cell concentration in an SFPR whole cell biocatalytic Baeyer- Villiger oxidation process. Biotechnol. Bioeng. 93: 1138-1144. https://doi.org/10.1002/bit.20829
  11. Isken S, de Bont JA. 1998. Bacteria tolerant to organic solvents. Extremophiles 2: 229-238. https://doi.org/10.1007/s007920050065
  12. Jon DS. 1998. Cyclohexanone monopoxygenase: a useful reagent asymmetric Baeyer-Villiger reactions. Curr. Opin. Biotechnol. 2: 195-216.
  13. Joshi M, Dikshit KL. 1994. Oxygen dependent regulation of Vitreoscilla globin gene: evidence for positive regulation by FNR. Biochem. Biophys. Res. Commun. 202: 535-542. https://doi.org/10.1006/bbrc.1994.1961
  14. Kallio PT, Kim DJ, Tsai PS, Bailey JE. 1994. Intracellular expression of Vitreoscilla hemoglobin alters Escherichia coli energy metabolism under oxygen-limited conditions. Eur. J. Biochem. 219: 201-208. https://doi.org/10.1111/j.1432-1033.1994.tb19931.x
  15. Khosla C, Bailey JE. 1988. Heterologous expression of a bacterial haemoglobin improves the growth properties of recombinant Escherichia coli. Nature 331: 633-635. https://doi.org/10.1038/331633a0
  16. Khosla C, Bailey JE. 1989. Characterization of the oxygendependent promoter of the Vitreoscilla hemoglobin gene in Escherichia coli. J. Bacteriol. 171: 5995-6004. https://doi.org/10.1128/jb.171.11.5995-6004.1989
  17. Khosla C, Bailey JE. 1989. Evidence for partial export of Vitreoscilla hemoglobin into the periplasmic space in Escherichia coli. Implications for protein function. J. Mol. Biol. 210: 79-89. https://doi.org/10.1016/0022-2836(89)90292-1
  18. Khosla C, Curtis JE, DeModena J, Rinas U, Bailey JE. 1990. Expression of intracellular hemoglobin improves protein synthesis in oxygen-limited Escherichia coli. Biotechnology (NY) 8: 849-853. https://doi.org/10.1038/nbt0990-849
  19. Lee WH, Kim JW, Park EH, Han NS, Kim MD, Seo JH. 2013. Effects of NADH kinase on NADPH-dependent biotransformation processes in Escherichia coli. Appl. Microbiol. Biotechnol. 97: 1561-1569. https://doi.org/10.1007/s00253-012-4431-3
  20. Lee WH, Park JB, Park K, Kim MD, Seo JH. 2007. Enhanced production of $\varepsilon$-caprolactone by overexpression of NADPHregenerating glucose 6-phosphate dehydrogenase in recombinant Escherichia coli harboring cyclohexanone monooxygenase gene. Appl. Microbiol. Biotechnol. 76: 329-338. https://doi.org/10.1007/s00253-007-1016-7
  21. Leisch H, Mortey K, Lau PC. 2011. Baeyer-Villiger monooxygenases: more than just green chemistry. Chem. Rev. 111: 4165-4222. https://doi.org/10.1021/cr1003437
  22. Park JB. 2007. Oxygenase-based whole-cell biocatalysis in organic synthesis. J. Microbiol. Biotechnol. 17: 379-392.
  23. Ramandeep, Hwang KW, Raje M, Kim KJ, Stark BC, Dikshit KL, Webster DA. 2001. Vitreoscilla hemoglobin. Intracellular localization and binding to membranes. J. Biol. Chem. 276: 24781-24789. https://doi.org/10.1074/jbc.M009808200
  24. Sanny T, Arnaldos M, Kunkel SA, Pagilla KR, Stark BC. 2010. Engineering of ethanolic E. coli with the Vitreoscilla hemoglobin gene enhances ethanol production from both glucose and xylose. Appl. Microbiol. Biotechnol. 88: 1103-1112. https://doi.org/10.1007/s00253-010-2817-7
  25. Walton AZ, Stewart JD. 2002. An efficient enzymatic Baeyer-Villiger oxidation by engineered Escherichia coli cells under non-growing conditions. Biotechnol. Prog. 18: 262-268. https://doi.org/10.1021/bp010177c
  26. Walton AZ, Stewart JD. 2004. Understanding and improving NADPH-dependent reactions by nongrowing Escherichia coli cells. Biotechnol. Prog. 20: 403-411.
  27. Zhang L, Li Y, Wang Z, Xia Y, Chen W, Tang K. 2007. Recent developments and future prospects of Vitreoscilla hemoglobin application in metabolic engineering. Biotechnol. Adv. 25: 123-136. https://doi.org/10.1016/j.biotechadv.2006.11.001
  28. Zhao H, van der Donk WA. 2003. Regeneration of cofactors for use in biocatalysis. Curr. Opin. Biotechnol. 14: 583-589. https://doi.org/10.1016/j.copbio.2003.09.007

Cited by

  1. Dual utilization of NADPH and NADH cofactors enhances xylitol production in engineeredSaccharomyces cerevisiae vol.10, pp.12, 2014, https://doi.org/10.1002/biot.201500068
  2. Mechanistic insights into the ring-opening of biomass derived lactones vol.6, pp.16, 2014, https://doi.org/10.1039/c5ra22832h
  3. Tuning of the enzyme ratio in a neutral redox convergent cascade: A key approach for an efficient one‐pot/two‐step biocatalytic whole‐cell system vol.116, pp.11, 2019, https://doi.org/10.1002/bit.27133