DOI QR코드

DOI QR Code

The Calculation Method of Cell Count for the Bloom-forming (Green tide) Cyanobacterium using Correlation between Colony Area and Cell Number in Korea

군체 크기와 세포수 상관관계를 이용한 녹조 유발 남조류의 세포수 산정 방법

  • You, Kyung-A (Han River Environment Research Center, National Institute of Environmental Research) ;
  • Song, Mi-Ae (Water Environment Research Department, National Institute of Environmental Research) ;
  • Byeon, Myeong-Seop (Water Environment Research Department, National Institute of Environmental Research) ;
  • Lee, Hae-Jin (Nakdong River Environment Research Center, National Institute of Environmental Research) ;
  • Hwang, Soon-Jin (Department of Environmental Health Science, Konkuk University)
  • 유경아 (국립환경과학원 한강물환경연구소) ;
  • 송미애 (국립환경과학원 물환경연구부) ;
  • 변명섭 (국립환경과학원 물환경연구부) ;
  • 이혜진 (국립환경과학원 낙동강물환경연구소) ;
  • 황순진 (건국대학교 보건환경과학과)
  • Received : 2014.11.20
  • Accepted : 2014.12.26
  • Published : 2014.12.31

Abstract

Harmful Algal Bloom Alert System (HABAS) for drinking water supply is require to fast and accurate count as system monitoring of cyanobacterium occurrence and inducing a response action. We measured correlation between colony size and cell number including genus Anabaena, Aphanizomenon, Microcystis, Oscillatoria which are targeted at HABAS, deducted from standard formula, and suggested calculation method from colony size to the number of cell. We collected cyanobacteria samples at Han River (Paldang reservoir), Nakdong River (Dalseong weir, Changnyeonghaman weir) and Geum River (Gobok reservoir) from August to October, 2013. Also, we studied correlation between colony size and cell number, and calculated regression equation. As a result of correlation of harmful cyanobacteria by genus, Anabaena spp. and Aphanizomenon spp. having trichome showed high correlation coefficients more than 0.93 and Microcystis spp. having colony showed correlation coefficient of 0.76. As a result of correlation of harmful cyanobacteria by species, Anabaena crassa, Aphanizomenon flos-aquae, A. issatschenkoi, Oscillatoria curviceps, O. mougeotii having trichome showed high correlation coefficients from 0.89 to 0.96, and Microcystis aeruginosa, M. wessenbergii, M. viridis having colony showed correlation coefficients from 0.76 to 0.88. Compared with other genus Microcystis relatively showed low correlation because even species and colony size are the same, cell density and cell size are different from Microcystis strains. In this study, using calculated regression might be fast and simple method of cell counting. From now on, we need to secure additional samples, and make a decision to study about other species.

국내 상수원을 대상으로 시행하고 있는 조류경보제는 남조류 발생 현황을 취 정수장 등 물관리 기관에 전파하여 대응조치를 유도하는 제도로 신속하고 정확한 남조류 계수를 필요로 한다. 따라서 조류경보제 발령 기준 대상 남조류인 Anabaena, Aphanizomenon, Microcystis, Oscillatoria 속의 군체 크기와 세포수의 상관관계를 조사하고 회귀식을 도출하여 군체 크기로 세포수를 계산할 수 있는 방법을 알아보고자 하였다. 2013년 8월부터 10월까지 남조류가 과다증식한 시기에 한강(팔당호), 낙동강(달성보, 창녕함안보) 및 금강(고복저수지)의 대표지점에서 남조류 시료를 채집하였으며, 조류경보제 발령 기준 대상 남조류 속의 종별 군체 크기와 세포수의 상관 관계를 조사하여 종 및 속별 회귀식을 산정하였다. 남조류의 속별 상관분석 결과는 사상형인 Anabaena와 Aphanizomenon의 $r^2$값이 0.93 이상으로 높은 상관성을 보였으며 구형의 Microcystis는 0.76의 상관계수 값을 나타냈다. 종 별 상관분석 결과 사상형 남조류 Anabaena crassa, Aphanizomenon flos-aquae, A. issatschenkoi, Oscillatoria curviceps, O. mougeotii는 $r^2$값이 0.89~0.96의 범위로 높은 상관성을 나타냈으며, 구형인 Microcystis aeruginosa, M. wessenbergii, M. viridis는 0.76~0.88의 상관계수 값을 나타냈다. 다른 속에 비해 상대적으로 Microcystis의 상관성이 낮게 나타난 이유는 동일한 종, 동일한 크기의 군체라도 Microcystis strain에 따라 점액질 내의 세포 밀집 정도와 세포 크기에 차이가 있기 때문이다. 본 연구 결과 도출한 회귀식을 이용하여 군체 크기 측정값을 세포수로 환산하는 방법이 기존의 세포 계수법과 비교할 때 신속하고 간편할 것으로 보인다. 향후 남조류 종별 더 정확한 회귀식을 도출하기 위해서는 많은 시료수 확보와 더불어 다른 종들에 대한 조사 연구가 진행되어야 할 것이다.

Keywords

References

  1. Ahn, C.Y., S.H. Joung, S.K. Yoon and H.M. Oh. 2007. Alternative Alert System for Cyanobacterial Bloom, Using Phycocyanin as a Level Determinant. The Journal of Microbiology 45(2): 98-104.
  2. Booker, M.J. and A.E. Walsby. 1981. Bloom formation and stratification by a planktonic blue-green alga in an experimental water column. British Phycological Journal 16(4): 411-421. https://doi.org/10.1080/00071618100650471
  3. Chen, W., L. Peng, N. Wan and L.R. Song. 2009. Mechanism study on the frequent variations of cell-bound microcystins in cyanobacterial blooms in Lake Taihu: implications for water quality monitoring and assessments. Chemosphere 77(11): 1585-1593. https://doi.org/10.1016/j.chemosphere.2009.09.037
  4. Chung, J. 1993. Illustration of the freshwater algae of Korea, Academy Publishing Company, Seoul, 496pp.
  5. Elke, S.R. and A. Ghadouani. 2012. Effects of rainfall patterns on toxic cyanobacterial blooms in a changing climate: Between simplistic scenarios and complex dynamics. Water Research 46: 1372-1393. https://doi.org/10.1016/j.watres.2011.11.052
  6. Finnish Environment Institute. 2003. Guidelines on Monitoring and Assessment of Transboundary and International Lakes. 100pp.
  7. Gibson, C.E. 1975. Cyclomorphosis in natural populations of Oscillatioria redekei Van Goor. Freshwater Biology 5(3): 279-286. https://doi.org/10.1111/j.1365-2427.1975.tb00141.x
  8. Hirose, H.M., T. Akiyama, K. Imahori, H. Kasaki, S. Kumana, H. Kobayasi, E. Takahashi, T. Tsumura, M. Hirano and T. Yamagishi. 1977. Illustration of the Japanese Freshwater Algae. Uchidarokakuho Publishing Co., Ltd., Tokyo, Japan, 932pp.
  9. Hotzel, G. and E. Croome. 1999. A phytoplankton Methods Manual for Australian Freshwaters. Land and Water Resources Research and Development Corporation, 58pp.
  10. John, D.M., B.A. Whitton and A.J. Brook. 2002. The freshwater algae flora of the British Isles: An identification guide to Freshwater and Terrestrial Algae. Cambridge University Press and The Natural History Museum, Cambridge, 720pp.
  11. John, D.M., B.A. Whitton and A.J. Brook. 2011. The Freahwater Algal Flora of the British Isles: An Identification guide to freshwater and terrestrial algae. Cambridge University Press, Cambridge, 878pp.
  12. Joung, S.H., C.J. Kim, C.Y. Ahn, K.Y. Lang, S.M. Boo and H.M. Oh. 2006. Simple method for a cell count of the colonial cyanobacterium, Microcystis sp. The Journal of Microbiology 44(5): 562-565.
  13. Konopka, A. 1982. Buoyancy regulation and vertical migration by Oscillatoria rubescens in Crooked Lake, Indiana. British Phycological Journal 17(4): 427-442. https://doi.org/10.1080/00071618200650451
  14. Konopka, A., T.D. Brock and A.E. Walsby. 1978. Buoyancy regulation by planktonic blue-green algae in Lake Mendota, Wisconsin. Archiv fur Hydrobiologie 83(4): 524-537.
  15. Lawton, L., B. Marsalek, J. Padisak and I. Chorus. 1999. Determination of cyanobacteria in the laboratory. p. 347-367. In: Toxic Cyanobacteria in Water (Chorus, I. and J. Bartram, eds.). E & FN Spon, London, UK.
  16. National Institute of Environmental Research. 2008. Report on implementing the algae alert system 2008. National Institute of Environmental Research, 176pp.
  17. National Institute of Environmental Research. 2009. Study on the alert criteria of harmful algal bloom alert system (II). National Institute of Environmental Research, 197pp.
  18. National Institute of Environmental Research. 2013. Research on implementing the harmful algal bloom alert system for weir in the Nakdong River watershed. National Institute of Environmental Research.
  19. Oliver, R.L. and A.E. Walsby. 1984. Direct evidence for the role of light-mediated gas vesicle collapse in the buoyancy regulation of Anabaena flos-aquae (cyanobacteria). Limnology and Oceanography 29(4): 879-886. https://doi.org/10.4319/lo.1984.29.4.0879
  20. Olson, F.C.W. 1950. Quantitative estimates of filamentous algae. Translations of the American Microscopical Society 69(3): 272-279. https://doi.org/10.2307/3223098
  21. Van Apeldoorn, M.E., H.P. van Egmond, G.J.A. Speijers and G.J.I. Bakker. 2007. Toxins of cyanobacteria. Molecular Nutrition & Food Research 51: 7-60. https://doi.org/10.1002/mnfr.200600185
  22. Walsby, A.E. and A. Avery. 1996. Measurement of filamentous cyanobacteria by image analysis. Journal of Microbiological Methods 26(1-2): 11-20. https://doi.org/10.1016/0167-7012(96)00816-0
  23. Watson, S.B. 2004. Aquatic taste and odor: a primary signal of drinking-water integrity. Journal of Toxicology and Environmental Health, Part A 67: 1779-1795. https://doi.org/10.1080/15287390490492377
  24. Watson, S.B., M. Charlton, Y.R. Rao, T. Howell, J. Ridal, B. Brownlee, C. Marvin and S. Millard. 2007. Off flavours in large waterbodies: physics, chemistry and biology in synchrony. Water Science and Technology 55: 1-8.
  25. You, K.A., M.S. Byeon, S.J. Youn, S.J. Hwang and D.H. Rhew. 2013. Growth characteristics of blue-green algae (Anabaena spiroides) causing tastes and odors in the North-Han River, Korea. Korean Journal of Limnology 46(1): 135-144.
  26. Zhou, Q., W. Chen, H. Zhang, L. Peng, L. Liu, Z. Han, N. Wan, L. Li and L. Song. 2012. A flow cytometer based protocol for quantitative analysis of bloom-forming cyanobacteria (Microcystis) in lake sediments. Journal of Environmental Sciences 24(9): 1709-1716. https://doi.org/10.1016/S1001-0742(11)60993-5