DOI QR코드

DOI QR Code

Discrimination of cultivation ages and cultivars of ginseng leaves using Fourier transform infrared spectroscopy combined with multivariate analysis

  • Kwon, Yong-Kook (Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Ahn, Myung Suk (Greenbio Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Park, Jong Suk (Jeollabuk-do, Agricultural Research and Extension Services) ;
  • Liu, Jang Ryol (Greenbio Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • In, Dong Su (Department of Biology Education, Gongju National University) ;
  • Min, Byung Whan (School of Ecological and Environmental System, Kyungpook National University) ;
  • Kim, Suk Weon (Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
  • Received : 2013.07.11
  • Accepted : 2013.09.25
  • Published : 2014.01.15

Abstract

To determine whether Fourier transform (FT)-IR spectral analysis combined with multivariate analysis of whole-cell extracts from ginseng leaves can be applied as a high-throughput discrimination system of cultivation ages and cultivars, a total of total 480 leaf samples belonging to 12 categories corresponding to four different cultivars (Yunpung, Kumpung, Chunpung, and an open-pollinated variety) and three different cultivation ages (1 yr, 2 yr, and 3 yr) were subjected to FT-IR. The spectral data were analyzed by principal component analysis and partial least squares-discriminant analysis. A dendrogram based on hierarchical clustering analysis of the FT-IR spectral data on ginseng leaves showed that leaf samples were initially segregated into three groups in a cultivation age-dependent manner. Then, within the same cultivation age group, leaf samples were clustered into four subgroups in a cultivar-dependent manner. The overall prediction accuracy for discrimination of cultivars and cultivation ages was 94.8% in a cross-validation test. These results clearly show that the FT-IR spectra combined with multivariate analysis from ginseng leaves can be applied as an alternative tool for discriminating of ginseng cultivars and cultivation ages. Therefore, we suggest that this result could be used as a rapid and reliable F1 hybrid seed-screening tool for accelerating the conventional breeding of ginseng.

Keywords

References

  1. Sathiyamoorthy S, In JG, Gayathri S, Kim YJ, Yang DC. Generation and gene ontology based analysis of expressed sequence tags (EST) from a Panax ginseng C. A. Meyer roots. Mol Biol Rep 2010;37:3465-72. https://doi.org/10.1007/s11033-009-9938-z
  2. Lee SY, Kim YK, Park IN, Kim CS, Lee CY, Park SU. Chemical constituents and biological activities of the berry of Panax ginseng. J Med Plant Res 2010;4: 349-53.
  3. Choi KT. Botanical characteristics, pharmacological effects and medicinal components of Korean Panax ginseng C. A. Meyer. Acta Pharmacol Sin 2008;29:1109-18. https://doi.org/10.1111/j.1745-7254.2008.00869.x
  4. Wang H, Sun H, Kwon WS, Jin H, Yang DC. Molecular identification of the Korean ginseng cultivar "Chunpoong" using the mitochondrial nad7 intron 4 region. Mitochondrial DNA 2009;20:41-5. https://doi.org/10.1080/19401730902856738
  5. Canter PH, Thomas H, Ernst E. Bringing medicinal plants into cultivation: opportunities and challenges for biotechnology. Trends Biotechnol 2005;23: 180-5. https://doi.org/10.1016/j.tibtech.2005.02.002
  6. Ha WY, Shaw PC, Liu J, Yau FC, Wang J. Authentication of Panax ginseng and Panax quinquefolius using amplified fragment length polymorphism (AFLP) and directed amplification of minisatellite region DNA (DAMD). J Agric Food Chem 2002;50:1871-5. https://doi.org/10.1021/jf011365l
  7. Hong DY, Lau AJ, Yeo CL, Liu XK, Yang CR, Koh HL, Hong Y. Genetic diversity and variation of saponin contents in Panax notoginseng roots from a single farm. J Agric Food Chem 2005;53:8460-7. https://doi.org/10.1021/jf051248g
  8. Kwon HK, Ahn CH, Choi YE. Molecular authentication of Panax notoginseng by specific AFLP-derived SCAR marker. J Med Plant Res 2009;3:955-64.
  9. Bai D, Brandle J, Reeleder R. Genetic diversity in North American ginseng (Panax quinquefolius L.) grown in Ontario detected by RAPD analysis. Genome 1997;40:111-5. https://doi.org/10.1139/g97-015
  10. Watanabe T, Kawaguchi K, Suzuki H, Yoshikawa T, Takano A, Isoda S, Kohda H, Malla KJ. Studies on the medicinal plant resources of the Himalayas( 3), random amplified polymorphic DNA analysis and saponin contents of Himalayan ginseng (Panax pseudo-ginseng Wall.). J Nat Med 1998;52: 426-33.
  11. Schluter C, Punja ZK. Genetic diversity among natural and cultivated field populations and seed lots of American ginseng (Panax quinquefolius L.) in Canada. Int J Plant Sci 2002;163:427-39. https://doi.org/10.1086/339512
  12. Kim C, Choi HK. Genetic diversity and relationship in Korean ginseng (Panax schinseng) based on RAPD analysis. Kor J Genet 2003;25:181-8.
  13. Artyukova EV, Kozyrenko MM, Koren OG, Muzarok TI, Reunova GD, Zhuravlev YN. RAPD and allozyme analysis of genetic diversity in Panax ginseng C.A. Meyer and P. quinquefolius L. Russ J Genet 2004;40:239-47 [Article in Russian]. https://doi.org/10.1023/B:RUGE.0000021622.09855.49
  14. Lim W, Mudge KW, Weston LA. Utilization of RAPD markers to assess genetic diversity of wild populations of North American ginseng (Panax quinquefolium). Planta Med 2007;73:71-6. https://doi.org/10.1055/s-2006-951768
  15. Lee C, Wen J. Phylogeny of Panax using chloroplast trnC-trnD intergenic region and the utility of trnC-trnD in interspecific studies of plants. Mol Phylogenet Evol 2004;31:894-903. https://doi.org/10.1016/j.ympev.2003.10.009
  16. Okada T, Afendi FM, Altaf-Ul-Amin M, Takahashi H, Nakamura K, Kanaya S. Metabolomics of medicinal plants: the importance of multivariate analysis of analytical chemistry data. Curr Comput Aided Drug Des 2010;6:179-96. https://doi.org/10.2174/157340910791760055
  17. Kim SW, Ban SH, Chung H, Cho SH, Chung HJ, Choi PS, Yoo OJLiu J.R.. Taxonomic discrimination of higher plants by multivariate analysis of Fourier transform infrared spectroscopy data. Plant Cell Rep 2004;23:246-50. https://doi.org/10.1007/s00299-004-0811-1
  18. Ward JL, Harris C, Lewis J, Beale MH. Assessment of 1H NMR spectroscopy and multivariate analysis as a technique for metabolite fingerprinting of Arabidopsis thaliana. Phytochemistry 2003;62:949-57. https://doi.org/10.1016/S0031-9422(02)00705-7
  19. Kim SW, Min SR, Kim JH, Park SK, Kim TI, Liu JR. Rapid discrimination of commercial strawberry cultivars using Fourier transform infrared spectroscopy data combined by multivariate analysis. Plant Biotechnol Rep 2009;3:87-93. https://doi.org/10.1007/s11816-008-0078-z
  20. Roessner U, Luedemann A, Brust D, Fiehn O, Linke T, Willmitzer L, Fernie A. Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. Plant Cell 2001;13:11-29. https://doi.org/10.1105/tpc.13.1.11
  21. Garratt LC, Linforth R, Taylor AJ, Lowe KC, Power JB, Davey MR. Metabolite fingerprinting in transgenic lettuce. Plant Biotechnol J 2005;3:165-74. https://doi.org/10.1111/j.1467-7652.2004.00110.x
  22. Baker JM, Hawkins ND, Ward JL, Lovegrove A, Napier JA, Shewry PR, Beale MH. A metabolomic study of substantial equivalence of field-grown genetically modified wheat. Plant Biotechnol J 2006;4:381-92. https://doi.org/10.1111/j.1467-7652.2006.00197.x
  23. Beckmann M, Enot DP, Overy DP, Draper J. Representation, comparison, and interpretation of metabolome fingerprint data for total composition analysis and quality trait investigation in potato cultivars. J Agric Food Chem 2007;55: 3444-51. https://doi.org/10.1021/jf0701842
  24. Ren Y, Wang T, Peng Y, Xia B, Qu LJ. Distinguishing transgenic from nontransgenic Arabidopsis plants by 1H NMR-based metabolic fingerprinting. J Genet Genomics 2009;36:621-8. https://doi.org/10.1016/S1673-8527(08)60154-X
  25. Lebot V, Ndiaye A, Malpa R. Phenotypic characterization of sweet potato [Ipomoea batatas (L.) Lam.] genotypes in relation to prediction of chemical quality constituents by NIRS equations. Plant Breeding 2011;130:457-63. https://doi.org/10.1111/j.1439-0523.2010.01840.x
  26. Deborde C, Maucourt M, Baldet P, Bernillon S, Biais B, Talon G, Ferrand C, Jacob D, Dumazet HF, Daruvar A, et al. Proton NMR quantitative profiling for quality assessment of greenhouse-grown tomato fruit. Metabolomics 2009;5: 183-98. https://doi.org/10.1007/s11306-008-0134-2
  27. Lee EJ, Shaykhutdinov R, Weljie AM, Vogel HJ, Facchini PJ, Park SU, Kim YK, Yang TJ. Quality assessment of ginseng by 1H NMR metabolite fingerprinting and profiling analysis. J Agric Food Chem 2009;57:7513-22. https://doi.org/10.1021/jf901675y
  28. Shin YS, Bang KH, In DS, Kim OT, Hyun DY, Ahn IO, Ku BC, Kim SW, Seong NS, Cha SW, et al. Fingerprinting analysis of fresh ginseng roots of different ages using 1H-NMR spectroscopy and principal components analysis. Arch Pharm Res 2007;30:1625-8. https://doi.org/10.1007/BF02977333
  29. Lin WN, Lu HY, Lee MS, Yang SY, Chen HJ, Chang YS, Chang WT. Evaluation of the cultivation age of dried ginseng radix and its commercial products by using 1H-NMR fingerprint analysis. Am J Chin Med 2010;38:205-18. https://doi.org/10.1142/S0192415X10007762
  30. Woo YA, Kim HJ, Chung H. Classification of cultivation area of ginseng radix with NIR and Raman spectroscopy. Analyst 1999;124:1223-6. https://doi.org/10.1039/a902396h
  31. Xie HP, Jiang JH, Chen ZQ, Shen GL, Yu RQ. Chemometric classification of traditional Chinese medicines by their geographical origins using nearinfrared reflectance spectra. Anal Sci 2006;22:1111-6. https://doi.org/10.2116/analsci.22.1111
  32. Edwards HG, Munshi T, Page K. Analytical discrimination between sources of ginseng using Raman spectroscopy. Anal Bioanal Chem 2007;389:2203-15. https://doi.org/10.1007/s00216-007-1605-4
  33. Liu D, Li YG, Xu H, Sun SQ, Wang ZT. Differentiation of the root of cultivated ginseng, mountain cultivated ginseng and mountain wild ginseng using FT-IR and two-dimensional correlation IR spectroscopy. J Mol Struct 2008;883e 884:228-35. https://doi.org/10.1016/j.molstruc.2008.02.025
  34. Chen X, Wu D, He Y, Liu S. Nondestructive differentiation of Panax species using visible and shortwave near-infrared spectroscopy. Food Bioprocess Technol 2009;4:753-61.
  35. Chen P, Harnly JM, Harrington Pde B. Flow injection mass spectroscopic fingerprinting and multivariate analysis for differentiation of three Panax species. J AOAC Int 2011;94:90-9.
  36. Lee HS, Liu JR, Yang SG, Lee YH, Lee KW. In vitro flowering of plantlets regenerated from zygotic embryo-derived somatic embryos of ginseng. Hort Sci 1990;25:1652-4.
  37. Kohavi R. A study of cross-validation and bootstrap for accuracy estimation and model selection. IJCAI 1995;2:1137-43.
  38. Proctor JT, Bailey WG. Ginseng: industry, botany, and culture. Hort Rev 1987;9:187-236.
  39. Parker FS. Applications of infrared, Raman and resonance Raman spectroscopy in biochemistry. New York: Plenum Press; 1983. 527 p p.
  40. Wang H, Peng D, Xie J. Ginseng leaf-stem: bioactive constituents and pharmacological functions. Chin Med 2009;4:20. https://doi.org/10.1186/1749-8546-4-20
  41. Jackson CJ, Dini JP, Lavandier C, Faulkner HP, Rupasinghe HP, Proctor JT. Ginsenoside content of North American ginseng (Panax quinquefolius L. Araliaceae) in relation to plant development and growing locations. J Ginseng Res 2003;27:135-40. https://doi.org/10.5142/JGR.2003.27.3.135
  42. Proctor JT, Sullivan AJ, Rupasinghe HP, Jackson CJ. Morphological and ginsenoside differences among north American ginseng leaves. J Ginseng Res 2011;35:155-61. https://doi.org/10.5142/jgr.2011.35.2.161
  43. Baranski R, Baranska M, Schulz H, Simon PW, Nothnagel T. Single seed Raman measurements allow taxonomical discrimination of Apiaceae accessions collected in gene banks. Biopolymers 2006;81:497-505. https://doi.org/10.1002/bip.20452
  44. Schulz H, Baranska M. Identification and quantification of valuable plant substances by IR and Raman spectroscopy. Vib Spectrosc 2007;43:13-25. https://doi.org/10.1016/j.vibspec.2006.06.001
  45. Rothschild KJ. FTIR difference spectroscopy of bacteriorhodopsin: toward a molecular model. J Bioenerg Biomembr 1992;24:147-67. https://doi.org/10.1007/BF00762674
  46. Pandey KK. A study of chemical structure of soft and hardwood and wood polymers by FTIR spectroscopy. J Appl Polym Sci 1999;71:1969-75. https://doi.org/10.1002/(SICI)1097-4628(19990321)71:12<1969::AID-APP6>3.0.CO;2-D
  47. Lopez-Sanchez M, Ayora-Canada MJ, Molina-Diaz A. Olive fruit growth and ripening as seen by vibrational spectroscopy. J Agric Food Chem 2010;58: 82-7. https://doi.org/10.1021/jf902509f
  48. Lacey DJ, Wellner N, Beaudoin F, Napier JA, Shewry PR. Secondary structure of oleosins in oil bodies isolated from seeds of safflower (Carthamus tinctorius L.) and sunflower (Helianthus annuus L.). Biochem J 1998;334:469-77. https://doi.org/10.1042/bj3340469
  49. Ruan X, Wei J, Xu Q, Wang JS, Gong YD, Zhang XF, Kuang TY, Zhao NM. Comparison of the effects of Triton X-100 treatment on the protein secondary structure of photosystem I and photosystem II studied by FT-IR spectroscopy. J Mol Struct 2000;525:97-106. https://doi.org/10.1016/S0022-2860(00)00422-1
  50. Shi C, Dai Y, Liu Q, Xie Y, Xu X. The FT-IR spectrometric analysis of the changes of polyphenol oxidase II secondary structure. J Mol Struct 2003;644:139-44. https://doi.org/10.1016/S0022-2860(02)00471-4
  51. Schwinte P, Foerstendorf H, Hussain Z, Gärtner W, Mroginski MA, Hildebrandt P, Siebert F. FTIR study of the photoinduced processes of plant phytochrome phyA using isotope-labeled bilins and density functional theory calculations. Biophys J 2008;95:1256-67. https://doi.org/10.1529/biophysj.108.131441
  52. Baranska M, Schulz H, Christensen LP. Structural changes of polyacetylenes in American ginseng root can be observed in situ by using Raman spectroscopy. J Agric Food Chem 2006;54:3629-35. https://doi.org/10.1021/jf060422d
  53. Di Donna L, Mazzotti F, Naccarato A, Salerno R, Tagarelli A, Taverna D, Sindona G. Secondary metabolites of Olea europaea leaves as markers for the discrimination of cultivars and cultivation zones by multivariate analysis. Food Chem 2010;121:492-6. https://doi.org/10.1016/j.foodchem.2009.12.070
  54. Yang M, Sun J, Lu Z, Chen G, Guan S, Liu X, Jiang B, Ye M, Guo DA. Phytochemical analysis of traditional Chinese medicine using liquid chromatography coupled with mass spectrometry. J Chromatogr A 2009;1216:2045-62. https://doi.org/10.1016/j.chroma.2008.08.097
  55. Yang DZ, An YQ, Jiang XL, Tang DQ, Gao YY, Zhao HT, Wu XW. Development of a novel method combining HPLC fingerprint and multi-ingredients quantitative analysis for quality evaluation of traditional Chinese medicine preparation. Talanta 2011;85:885-90. https://doi.org/10.1016/j.talanta.2011.04.059
  56. Kim N, Kim K, Choi BY, Lee D, Shin YS, Bang KH, Cha SW, Lee JW, Choi HK, Jang DS, et al. Metabolomic approach for age discrimination of Panax ginseng using UPLC-Q-Tof MS. J Agric Food Chem 2011;59:10435-41. https://doi.org/10.1021/jf201718r

Cited by

  1. A novel approach to discriminate Lycium barbarum from the Zhongning area using FT-IR spectroscopy and chemometrics vol.7, pp.21, 2014, https://doi.org/10.1039/c5ay02346g
  2. 한약자원 품목별 표준시료와 기내 생산 부정근의 FT-IR 스펙트럼 기반 대사체 동등성 신속 비교 vol.42, pp.3, 2014, https://doi.org/10.5010/jpb.2015.42.3.257
  3. Volatile compounds of ginseng (Panax sp.): a review vol.58, pp.1, 2014, https://doi.org/10.1007/s13765-015-0007-0
  4. FT-IR 스펙트럼 데이터의 다변량 통계분석을 이용한 곶감의 원산지 및 품종 식별 vol.47, pp.1, 2015, https://doi.org/10.9721/kjfst.2015.47.1.20
  5. FT-IR스펙트럼 데이터의 다변량통계분석 기반 들잔디와 갯잔디의 대사체 수준 신속 식별 체계 vol.43, pp.2, 2014, https://doi.org/10.5010/jpb.2016.43.2.213
  6. Discrimination and prediction of cultivation age and parts of Panax ginseng by Fourier-transform infrared spectroscopy combined with multivariate statistical analysis vol.12, pp.10, 2014, https://doi.org/10.1371/journal.pone.0186664
  7. Application of Metabolomics to Quality Control of Natural Product Derived Medicines vol.25, pp.6, 2014, https://doi.org/10.4062/biomolther.2016.249
  8. Study on the Correlation between Gene Expression and Enzyme Activity of Seven Key Enzymes and Ginsenoside Content in Ginseng in Over Time in Ji’an, China vol.18, pp.12, 2017, https://doi.org/10.3390/ijms18122682
  9. FT-MIR and NIR spectral data fusion: a synergetic strategy for the geographical traceability of Panax notoginseng vol.410, pp.1, 2014, https://doi.org/10.1007/s00216-017-0692-0
  10. Metabolic dynamics and physiological adaptation of Panax ginseng during development vol.37, pp.3, 2014, https://doi.org/10.1007/s00299-017-2236-7
  11. IBA 및 elicitor 처리에 따른 백수오 기내 생산 부정근 및 표준품의 FT-IR 스펙트럼 기반 대사체 비교 분석 vol.45, pp.3, 2018, https://doi.org/10.5010/jpb.2018.45.3.250
  12. Enhanced production of phenolic compounds in hairy root cultures of Polygonum multiflorum and its metabolite discrimination using HPLC and FT-IR methods vol.102, pp.22, 2018, https://doi.org/10.1007/s00253-018-9359-9
  13. Quality evaluation of Panax ginseng adventitious roots based on ginsenoside constituents, functional genes, and ferric‐reducing antioxidant power vol.43, pp.8, 2014, https://doi.org/10.1111/jfbc.12901
  14. Development of a Validated UPLC-MS/MS Method for Analyzing Major Ginseng Saponins from Various Ginseng Species vol.24, pp.22, 2019, https://doi.org/10.3390/molecules24224065
  15. Onsite age discrimination of an endangered medicinal and aromatic plant species Valeriana jatamansi using field hyperspectral remote sensing and machine learning techniques vol.42, pp.10, 2021, https://doi.org/10.1080/01431161.2021.1881184