J. Appl. Math. & Informatics Vol. **32**(2014), No. 1 - 2, pp. 1 - 6 http://dx.doi.org/10.14317/jami.2014.001

A NEW VERTEX-COLORING EDGE-WEIGHTING OF COMPLETE GRAPHS

MOHAMMAD REZA FARAHANI

ABSTRACT. Let G = (V; E) be a simple undirected graph without loops and multiple edges, the vertex and edge sets of it are represented by V = V(G) and E = E(G), respectively. A weighting w of the edges of a graph Ginduces a coloring of the vertices of G where the color of vertex v, denoted $S_v := \sum_{e \ni v} w(e)$. A k-edge-weighting of a graph G is an assignment of an integer weight, $w(e) \in \{1, 2, \ldots, k\}$ to each edge e, such that two vertexcolor S_v, S_u be distinct for every edge uv. In this paper we determine an exact 3-edge-weighting of complete graphs $k_{3q+1} \ \forall q \in \mathbb{N}$. Several open questions are also included.

AMS Mathematics Subject Classification : 05C15, 05C78. *Key words and phrases* : Graph labeling, Edge-weighting, Vertex-coloring, Complete Graph.

1. Introduction

Let G = (V; E) be a simple undirected graph without loops and multiple edges, the vertex and edge sets of it are represented by V = V(G) and E = E(G), respectively. A weighting w of the edges of a graph G induces a coloring of the vertices of G.

A k-edge-weighting of a graph G is an assignment of an integer weight, $w(e) \in \{1, 2, ..., k\}$ to each edge e. The edge-weighting is proper if for every edge e = uv incident a proper vertex-coloring and the colors of two vertices u, v are distinct, where the color of a vertex v is defined as the sum of the weights on the edges incident to that vertex. Clearly a graph cannot have a k-edge-weighting and vertex-coloring if it has a component which is isomorphic to K_2 i.e., an edge component. Throughout this paper, we denoted the color of a vertex v by $S_v := \sum_{u \in V(G)} w(uv)$, such that if vw is not in V(G) w(vw) = 0.

In particular a 3-edge-weighting of G called 1-2-3-edge weighting and vertex coloring of G.

Received March 17, 2013. Revised May 30, 2013. Accepted July 3, 2013. © 2014 Korean SIGCAM and KSCAM.

¹

In 2002 [9], Karonski, Luczak and Thomason conjectured that every graph without an edge component permits a 1-2-3-edge weighting and vertex coloring and proved their conjecture for the case of 3-colorable graphs [9]. For k = 2 is not sufficient as seen for instance in complete graphs and cycles of length not divisible by 4.

In 2004, they proved a graph without an edge component permits an 213edge-weighting and vertex coloring. In continue a constant bound of k = 30was proved by *Addario-Berry*, *et.al* in 2007 [1]. In next year, Addario-Berry's group improved this bound to k = 16 [2] and also in 2008, *T. Wang* and *Q. Yu* improved k to 13 [10]. Recently, its new bounds are k = 5 and k = 6 by *Kalkowski*, *et.al* [7, 8]. In addition, for further study and more historical details, readers can see the recent papers [3-5].

In this paper, we show that there is a proper 1-2-3-edge weighting and vertex coloring for the complete graphs $K_{3q+1} \forall q \in \mathbb{N}$ and obtain an exact weighting w of all edges $e \in E(K_{3q+1})$ and alternatively a proper color of all vertices $v \in V(K_{3q+1})$. We present these main results in the following theorem:

Theorem 1.1. For the complete graph K_{3q+1} for every integer number q with the vertex set $V(K_{3q+1}) = \{v_1, v_2, ..., v_{3q+1}\}$, there are a 3-edge weighting $w : E(K_{3q+1}) \to \{1, 2, 3\}$ and a vertex-coloring $s : V(K_{3q+1}) \to \{9q, 9q-1, ..., 7q+1, 7q, 7q-2, 7q-5, 7q-9, ..., 3q+11, 3q+7, 3q+4\}.$

2. Main Results and Algorithm

For a graph complete graph $K_n = (V(K_n); E(K_n))$, a 3-edge weighting is a function $w : E(K_n) \to \{1, 2, 3\}$ such that $S_v = \sum_{u \in V(K_n)} w(uv) \neq S_u$ is a color for any every vertex $v \in V(K_n)$. The edge weighting w implies that $E(K_n) = E(K_n)_1 \cup E(K_n)_2 \cup E(K_n)_3$. Throughout this paper, we denoted the size of edge sets $E(K_n)_1, E(K_n)_2$ and $E(K_n)_3$ by γ_n , β_n and α_n , respectively. Obviously $\gamma_n + \beta_n + \alpha_n = \frac{n(n-1)}{2}$.

Before proving Theorem 1.1, for a general representation of complete graph $K_{3q+1} \forall q \in \mathbb{N}$, we present a proper 3-edge weighting for all edges incident to a vertex v in 3q + 1 following steps and obtain all summations S_v .

2.1.Algorithm for 1-2-3-edge weighting and vertex coloring of K_{3q+1} $(q \geq 5)$: At first, we denote all vertices of K_{3q+1} by $v_1, v_2, \ldots, v_{3q+1}$, respectively. Obviously $E(K_{3q+1}) = \{v_i v_j | i \neq j, i, j = 1, 2, \ldots, 3q + 1\}$ and this implies that $S_{v_i} = \sum_{v_j \in V(K_{3q+1}), i \neq j, j=1, \ldots, 3q+1} w(v_i v_j) = (S_i)$. Suppose $\forall i = 1, 2, \ldots, 3q + 1; w(v_i v_i) = 0$. So, we have

Step(1)- For the vertex v_1 label all its edges with $3 (\forall v_j \in V(K_{3q+1}) w(v_1v_j) = 3$ and $S_{v_1} = \sum_{u \in V(K_{3q+1})} w(uv) = 3(3q)).$

Step(2)- For v_2 label all v_2 's edges with 3, except an edge v_2v_{3q+1} , then $\forall j = 1, 3, 4, ..., 3q, w(v_2v_j) = 3$ and $w(v_2v_{3q+1}) = 2$. Thus $S_2 = S_1 - 1 = 9q - 1$.

Step(3)- For v_3 label all edges v_3v_j (j = 1, 2, 4, ..., 3q - 1) with 3 and v_3v_{3q}, v_3v_{3q+1} with 2. Thus $S_3 = S_2 - 1 = 9q - 2$.

Step(4)- For v_4 label all edges v_4v_j (j = 1, 2, 3, 5, ..., 3q - 1) with 3, v_4v_{3q} with 2 and v_4v_{3q+1} with 1. Thus $S_4 = S_3 - 1 = 9q - 3$.

Step(s)- $\forall s = 5, 7, \dots, 2q - 1$ label all edges $v_s v_j$ $(j = 1, 2, \dots, s - 1, s + 1, \dots, 3q - [\frac{s}{2}])$ with 3, label $v_s v_{3q-[\frac{s}{2}]+1}, v_s v_{3q-[\frac{s}{2}]+2}$ with 2 and all edge $v_s v_j$ $(j = 3q - [\frac{s}{2}] + 3, \dots, 3q + 1)$ with 1. Thus $S_s = 3 \times (3q - [\frac{s}{2}] - 1) + 2 \times 2 + 1 \times ([\frac{s}{2}] - 1) = 9q - 2[\frac{s}{2}] = S_{s-2} - 2.$

Step(r)- $\forall r = 6, 8, \dots, 2q$ label all edges $v_r v_j$ $(j = 1, 2, \dots, r-1, r+1, \dots, 3q+1-[\frac{r}{2}])$ with 3, label $v_r v_{3q-[\frac{r}{2}]+2}$ with 2 and all edge $v_r v_j$ $(j = 3q-[\frac{r}{2}]+3, \dots, 3q+1)$ with 1. Thus $S_r = 3 \times (3q+1-[\frac{r}{2}]-1)+2 \times 1+1 \times ([\frac{r}{2}]-1) = 9q+1-r = S_{r-2}-2.$

Step(2q+1)- For v_{2q+1} , all edges $v_{2q+1}v_j$ (j = 1, 2, ..., 2q) were labeled with 3. Thus label all edge $v_{2q+1}v_j$ (j = 2q + 2, ..., 3q + 1) with 1. Thus $S_{2q+1} = 3 \times 2q + 2 \times 0 + 1 \times (q) = 7q = S_{2q} - 1$.

Step(2q+2)- For v_{2q+2} , all edges $v_{2q+2}v_j$ (j = 1, 2, ..., 2q - 2) were labeled with 3, the edge $v_{2q+2}v_{2q-1}$, $v_{2q+2}v_{2q}$ were labeled with 2 and $v_{2q+2}v_{2q+1}$ were labeled with 1. Thus label all edges $v_{2q+2}v_j$ (j = 2q + 3, ..., 3q + 1) with 1 and $S_{2q+2} = 3 \times (2q - 2) + 2 \times 2 + 1 \times (q) = 7q - 2 = S_{2q+1} - 3$.

Step(t)- $\forall t = 2q + 3, ..., 3q - 2$ all edges $v_t v_j$ (j = 1, ..., 6q + 2 - 2t) were labeled with 3, three edges $v_t v_{6q+2-2t+i}$ for i = 1, 2, 3 were labeled with 2 and all edges $v_t v_j$ (j = 6q - 2t + 6, ..., t - 1) were labeled with 1. Thus label all edges $v_t v_j$ (j = t + 1, ..., 3q + 1) with 1 and $S_t = 3 \times (6q + 2 - 2t) + 2 \times 3 + 1 \times (2t - 3q - 5) = 15q + 7 - 4t = S_{t-1} - 4$.

Step(3q-1)- v_{3q-1} , $v_{3q-1}v_j$ (j = 1, 2, 3, 4) were labeled with 3 and $v_{3q-1}v_5$, $v_{3q-1}v_6$, $v_{3q-1}v_7$ were labeled with 2 and all edge $v_{3q-1}v_j$ (j = 8, ..., 3q - 2) were labeled with 1. Thus label $v_{3q-1}v_{3q}$, $v_{3q-1}v_{3q+1}$ with 1 and $S_{3q-1} = 3 \times 4 + 2 \times 3 + 1 \times (3q - 7) = 3q + 11 = S_{3q-2} - 4$.

Step(3q)- For v_{3q} , $v_{3q}v_1$, $v_{3q}v_2$ were labeled with 3 and $v_{3q}v_3$, $v_{3q}v_4$, $v_{3q}v_5$ were labeled with 2 and all edge $v_{3q}v_j$ (j = 6, ..., 3q - 1) were labeled with 1. Thus label the edge $v_{3q+1}v_{3q}$ with 1 and $S_{3q} = 3 \times 2 + 2 \times 3 + 1 \times (3q - 5) = 3q + 7 = S_{3q-1} - 4$.

Step(3q+1)- Obviously, for the vertex v_{3q+1} , the edge $v_{3q+1}v_1$ were labeled with 3 and $v_{3q+1}v_2, v_{3q+1}v_3$ were labeled with 2 and all edge $v_{3q+1}v_j$ $(j = 4, \ldots, 3q)$ were labeled with 1. Thus $S_{3q+1} = 3 + 2 \times 2 + 1 \times (3q - 3) = 3q + 4 = S_{3q} - 3$.

Now, we start the proof of main theorem as follow.

Proof. Let K_{3q+1} be a complete graph as order 3q+1 for every integer number q, with the vertex set $V(K_{3q+1}) = \{v_1, v_2, \ldots, v_{3q+1}\}$ and the edge set $E(K_{3q+1}) = \{e_{ij} = v_i v_j | v_i, v_j \in V(K_{3q+1})\} (|V(K_{3q+1})| = 3q+1 \text{ and } |E(K_{3q+1})| = \frac{3q(3q+1)}{2})$. It is easy to see that the above edge-weighting is a nice and proper 3-edge weighting w (or 1-2-3-edge weighting and vertex coloring) of K_{3q+1} ($q \ge 1$). Because $\forall v_i \in V(K_{3q+1})$ and for every edge $e_{ij} = v_i v_j$ incident to v_i , we have an integer weight $w(v_i v_j) \in \{1, 2, 3\}$ such that this weighting naturally induces two distinct vertex coloring S_{v_i} and S_{v_j} to vertices v_i, v_j .

M.R. Farahani

An every edge $e_{ij} = v_i v_j$ $(i, j = 1, 2, ..., 3q + 1, i \ge j)$ weighted in Step(i) of above 3-edge weighting w. Also, from above 3-edge weighting w, one can see that all vertex color belong to the color set $\{9q, 9q - 1, ..., 7q + 1, 7q, 7q - 2, 7q - 5, 7q - 9, ..., 3q + 11, 3q + 7, 3q + 4\}$ (For example, see Figure 1, 2 and 3). In Figure 1, 2 and 3, a proper 1-2-3-edge weighting and vertex coloring of complete graphs K_4 , K_7 , K_{10} , K_{13} and K_{16} are shown.

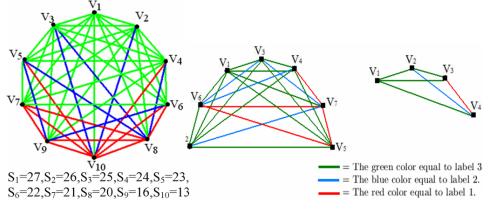


FIGURE 1. The 1-2-3-edge weighting and vertex coloring of complete graphs K_4 , K_7 and K_{10} .

Thus, the 3-edge weighting $w : E(K_{3q+1}) \to \{1, 2, 3\}$ and the vertex coloring $s : V(K_{3q+1}) \to \{9q, 9q-1, \ldots, 7q+1, 7q, 7q-2, 7q-5, 7q-9, \ldots, 3q+11, 3q+7, 3q+4\}$ is a proper 1-2-3-edge weighting and vertex coloring of $K_{3q+1} \forall q \in \mathbb{N}$ and this complete the proof of theorem. \Box

By using the proof of Theorem 1.1 (the 3-edge weighting w and the vertex coloring s), one can see that the number of all edge weigh 3, 2 and 1 are equal to $\alpha_{3q+1} = 3q^2 + 1 = (|E(K_{3q+1})_3|), \beta_{3q+1} = 3q - 2 = (|E(K_{3q+1})_2|) \text{ and } \gamma_{3q+1} = \frac{3q^2 - 3q + 2}{2} = (|E(K_{3q+1})_1|)$. For example, $E(K_{3q+1})_2 = \{v_2v_{3q+1}, v_4v_{3q}, v_5v_{3q-1}, v_5v_{3q}, v_6v_{3q-1}, v_7v_{3q-2}, v_sv_{3q-1}, v_8v_{3q-2}, \dots, v_{2q-1}v_{2q+2}, v_{2q-1}v_{2q+3}, v_{2q}v_{2q+2}, v_{2q+2}v_{2q-3}, v_{2q+2}v_{2q-2}, v_{2q+2}v_{2q-1}, v_{2q+3}v_{2q-3}, v_{2q+3}v_{2q-2}, v_{2q+4}v_{2q-4}, v_{2q+4}v_{2q-3}, \dots, v_{3q-2}v_6, v_{3q-2}v_7, v_{3q-2}v_8, v_{3q-1}v_5, v_{3q-1}v_6, v_{3q-1}v_7, v_{3q}v_3v_{3q}v_4, v_{3q}v_5, v_{3q+1}v_2, v_{3q+1}v_3\}.$

3. Conclusions and Conjectures

We conclude our paper with the following open questions and conjectures:

Corollary 3.1 (The 1-2-3-conjecture [6, 9]). Every connected graph G = (V, E) non-isomorph to K_2 (with at least two edges) has an edge labeling $f : E \longrightarrow \{1, 2, 3\}$ and vertex coloring $S : V \longrightarrow \{n - 1, ..., 3n - 3\}$.

Corollary 3.2 (*n* vertex coloring). There are distinct numbers of S_v 's, $v \in V(G)$, of a graph G of order n, for a 1-2-3-edge labeling and vertex coloring.

A New Vertex-Coloring Edge-Weighting of Complete Graphs

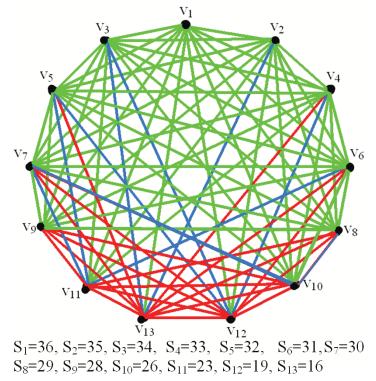


FIGURE 2. The 1-2-3-edge weighting and vertex coloring of K_{13} .

Corollary 3.3 (Proper vertex coloring). For all graph G of order n, there are the $\chi(G)$ numbers of S_v 's, $v \in V(G)$, with this 1-2-3-edge labeling and vertex Coloring. Where $\chi(G)$ is the number colors of the vertices on the graph G.

In this parer, we show that the complete graph K_{3q+1} $(q \ge 1)$, recognize in three Conjecture 3.1, 3.2 and 3.3.

Acknowledgement

The authors are thankful to Dr. Mehdi Alaeiyan, Mr Ali Ramin and Mr Seied Hamid Hosseini of Department of Mathematics, Iran University of Science and Technology (IUST) for their precious support and suggestions.

References

 Addario-Berry, L., Dalal, K., McDiarmid, C., Reed, B.A., and Thomason, A., Vertexcoloring edge-wheitings, Combinatorical. J. 27 (1982), (2007), 1-12.

Addario-Berry, L., Dalal, K., and Reed, B.A., Degree constrained sub- graphs, Discrete Applied Mathematics J. 156 (2008), 1168-1174.

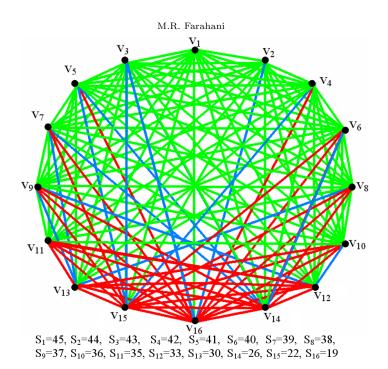


FIGURE 3. The 1-2-3-edge weighting and vertex coloring of complete graph K_{16} .

- Alaeiyan, M., Farahani, M.R., and Mohammadian, S., The 1-2-3-edge labeling and vertex colors. Submitted for publish, (2013).
- Farahani, M.R., On The 1-2-3-Edge Weighting and Vertex Coloring of Complete Graph. Int. J. Computational Sciences & Applications. (2013), Inpress.
- 5. Farahani, M.R., and Hosseini. S.H., The 1-2-3-edge labeling and vertex coloring of complete graph K_n . Submitted for publish, (2013).
- Grytczuka, J., Dalal, K., and Reed, B.A., *Thue type problems for graphs*, Discrete Mathematics J. 308 (2008), 4419-4429.
- Kalkowski, M., Karonski, M., and Pfender, F., Vertax-Coloring Edge-Weithings With Integer Weights At Most 6, Rostock. Math. Kolloq. 64 (2009), 39-43.
- Kalkowski, M., Karonski, M., and Pfender, F., Vertex-coloring edge-weightings: To wards the 1-2-3-conjecture, Combinatorial Theory (Series B) J. 100 (2010), 347-349.
- Karonskiy, M., Luczak, T., and Thomason, A., Edge weights and vertex colors, Combinatorial Theory (Series B) J. 91 (2004), 151-157.
- Wang, T., and Yu, Q., On vertex-coloring 13-edge-weighting, Front. Math. China. 3(4) (2008), 1-7.

Mohammad Reza Farahani

Department of Applied Mathematics, Iran University of Science and Technology (IUST), Narmak, Tehran 16844, Iran.

e-mail: MR_Farahani@Mathdep.iust.ac.ir